![江苏省盐城市盐城中学2024届数学高二下期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view10/M01/28/26/wKhkGWW7KuyAbng6AAH5baAnF0A881.jpg)
![江苏省盐城市盐城中学2024届数学高二下期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view10/M01/28/26/wKhkGWW7KuyAbng6AAH5baAnF0A8812.jpg)
![江苏省盐城市盐城中学2024届数学高二下期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view10/M01/28/26/wKhkGWW7KuyAbng6AAH5baAnF0A8813.jpg)
![江苏省盐城市盐城中学2024届数学高二下期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view10/M01/28/26/wKhkGWW7KuyAbng6AAH5baAnF0A8814.jpg)
![江苏省盐城市盐城中学2024届数学高二下期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view10/M01/28/26/wKhkGWW7KuyAbng6AAH5baAnF0A8815.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市盐城中学2024届数学高二下期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图形向左平移个单位后得到的图像关于轴对称,则正数的最小正值是()A. B. C. D.2.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线3.函数,则在点处的切线方程为()A. B. C. D.4.设集合A={x|x>0},B={x|x2-5x-14<0},则A.{x|0<x<5} B.{x|2<x<7}C.{x|2<x<5} D.{x|0<x<7}5.一个袋中装有大小相同的个白球和个红球,现在不放回的取次球,每次取出一个球,记“第次拿出的是白球”为事件,“第次拿出的是白球”为事件,则事件与同时发生的概率是()A. B. C. D.6.已知,,,则a,b,c的大小关系为A. B. C. D.7.在长为的线段上任取一点现作一矩形,领边长分别等于线段的长,则该矩形面积小于的概率为()A. B. C. D.8.已知,取值如下表:从所得的散点图分析可知:与线性相关,且,则等于()A. B. C. D.9.某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为()A.720 B.520 C.600 D.26410.已知,则等于(
)A. B. C. D.11.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.12.下列说法正确的个数有()①用刻画回归效果,当越大时,模型的拟合效果越差;反之,则越好;②命题“,”的否定是“,”;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。A.1个 B.2个 C.3个 D.4个二、填空题:本题共4小题,每小题5分,共20分。13.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有_______种不同的调度方法(填数字).14.在平面上,,,.若,则的取值范围是_______.15.已知集合,集合,则_______.16.已知随机变量服从正态分布,,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,,,点在直线上.(1)求角的值;(2)若,求的面积.18.(12分)北京市政府为做好会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率.(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利元,求的分布列,并求出数学期望.19.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.20.(12分)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为,某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.21.(12分)已知函数,其中为实数.(1)求函数的单调区间;(2)若函数有两个极值点,求证:.22.(10分)已知椭圆的左右顶点分别是,,点在椭圆上,过该椭圆上任意一点P作轴,垂足为Q,点C在的延长线上,且.(1)求椭圆的方程;(2)求动点C的轨迹E的方程;(3)设直线(C点不同A、B)与直线交于R,D为线段的中点,证明:直线与曲线E相切;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,得出结论.【题目详解】解:将函数的图形向左平移个单位后,可得函数的图象,再根据得到的图象关于轴对称,可得,即,令,可得正数的最小值是,故选:D.【题目点拨】本题主要考查函数的图象变换规律,三角函数的图象的对称性,属于基础题.2、A【解题分析】由代入消去参数t得又所以表示线段。故选A3、A【解题分析】分析:先求导数,根据导数几何意义得切线斜率,再根据点斜式求切线方程.详解:因为,所以所以切线方程为选A.点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.4、D【解题分析】试题分析:由B={x|x2-5x-14<0}={x|-2<x<7},所以考点:集合的运算.5、D【解题分析】
将事件表示出来,再利用排列组合思想与古典概型的概率公式可计算出事件的概率.【题目详解】事件:两次拿出的都是白球,则,故选D.【题目点拨】本题考查古典概型的概率计算,解题时先弄清楚各事件的基本关系,然后利用相关公式计算所求事件的概率,考查计算能力,属于中等题.6、D【解题分析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.7、C【解题分析】试题分析:设AC=x,则0<x<12,若矩形面积为小于32,则x>8或x<4,从而利用几何概型概率计算公式,所求概率为长度之比解:设AC=x,则BC=12-x,0<x<12若矩形面积S=x(12-x)<32,则x>8或x<4,即将线段AB三等分,当C位于首段和尾段时,矩形面积小于32,故该矩形面积小于32cm2的概率为P==故选C考点:几何概型点评:本题主要考查了几何概型概率的意义及其计算方法,将此概率转化为长度之比是解决本题的关键,属基础题8、B【解题分析】
计算平均数,可得样本中心点,代入线性回归方程,即可求得a的值.【题目详解】依题意,得(0+1+4+5+6+8)=4,(1.3+1.8+5.6+6.1++7.4+9.3)=5.25.又直线y=0.95x+a必过中心点(),即点(4,5.25),于是5.25=0.95×4+a,解得a=1.45.故选B.【题目点拨】本题考查线性回归方程,利用线性回归方程恒过样本中心点是关键.9、D【解题分析】
根据题意,分别讨论:甲、乙两节目只有一个参加,甲、乙两节目都参加,两种情况,分别计算,再求和,即可得出结果.【题目详解】若甲、乙两节目只有一个参加,则演出顺序的种数为:,若甲、乙两节目都参加,则演出顺序的种数为:;因此不同的演出顺序的种数为.故选:D.【题目点拨】本题主要考查有限制的排列问题,以及计数原理的简单应用,熟记计数原理的概念,以及有限制的排列问题的计算方法即可,属于常考题型.10、C【解题分析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式,则,故选C.点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.11、D【解题分析】由正弦定理有,为三角形外接圆半径,所以,在中,,同理,所以,选D.12、C【解题分析】分析:结合相关系数的性质,命题的否定的定义,回归方程的性质,推理证明即可分析结论.详解:①为相关系数,相关系数的结论是:越大表明模拟效果越好,反之越差,故①错误;②命题“,”的否定是“,”;正确;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;根据回归方程必过样本中心点的结论可得③正确;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。根据综合法和分析法定义可得④的描述正确;故正确的为:②③④故选C.点睛:考查命题真假的判断,对命题的逐一分析和对应的定义,性质的理解是解题关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先根据题意,选出满足题意的四辆车,确定对应的组合数,再根据题意进行排列,即可得出结果.【题目详解】从某车队调出4辆车,甲、乙两车必须参加,则有种选法;将选出的4辆车,按照“甲车要先于乙车开出”的要求进行排序,则有种排法;因此,满足题意的,调度方法有:种.故答案为:.【题目点拨】本题主要考查排列组合的应用,属于常考题型.14、【解题分析】
本题可以通过建立平面直角坐标系,将给的向量条件坐标化,然后把所求的也用坐标表示出来,最后根据式子采用适当的方法得出结果.【题目详解】设,则有因为所以①②③因为所以①+②得即由①②可知带入③中可知综上可得所以,的取值范围是.【题目点拨】在做向量类的题目的时候,可以通过构造直角坐标系,用点的坐标来表示向量以及向量之间的关系,借此来得出答案.15、{3,4}.【解题分析】
利用交集的概念及运算可得结果.【题目详解】,.【题目点拨】本题考查集合的运算,考查交集的概念与运算,属于基础题.16、0.16【解题分析】试题分析:因为随机变量服从正态分布,所以正态曲线的对称轴为.由及正态分布的性质,考点:正态分布及其性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)代入点到直线的方程,根据正弦定理完成角化边,对比余弦定理求角;(2)将等式化简成“平方和为零”形式,计算出的值,利用面积公式计算的面积.【题目详解】解:(1)由题意得,由正弦定理,得,即,由余弦定理,得,结合,得.(2)由,得,从而得,所以的面积.【题目点拨】本题考查正、余弦定理的简单应用,难度较易.使用正弦定理进行角化边或者边化角的过程时,一定要注意“齐次”的问题.18、(1);(2)分布列见解析,期望为1.【解题分析】
(1)利用对立事件的概率计算该产品不能销售的概率值;(2)由题意知的可能取值为,,,1,160;计算对应的概率值,写出分布列,计算数学期望.【题目详解】(1)记“该产品不能销售”为事件,则(A),所以,该产品不能销售的概率为;(2)由已知,的可能取值为,,,1,160计算,,,,;所以的分布列为1160;所以均值为1.【题目点拨】本题主要考查了离散型随机变量的分布列与数学期望的应用问题,意在考查学生对这些知识的理解掌握水平.19、(1)见解析(2).【解题分析】
试题分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质;平面与平面垂直的判定;直线与平面所成的角.20、(1)(2)见解析,【解题分析】
设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,可得,.(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,利用互斥事件与相互独立事件的概率计算公式即可得出.(2)的可能取值为0,1,2,3,4,,,,,,,,,,,,,,,利用互斥事件与相互独立事件的概率计算公式即可得出概率、分布列及其数学期望.【题目详解】解:设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,则,.(1)设事件A表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则.(2)的可能取值为0,1,2,3,4,,∴的分布列为:01234所以【题目点拨】本题考查了用频率估计概率、随机变量的数学期望、二项分布列的性质、互斥事件与相互独立事件的概率计算公式,考查了推理能力与计算能力,属于中档题.21、(1)见解析;(2)证明见解析【解题分析】
(1)计算导数,采用分类讨论的方法,,与,根据导数的符号判定原函数的单调性,可得结果.(2)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年12月滨州经济技术开发区下属街道办事处购买服务工作人员(46人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 在市委统战部2025年春节节后收心会上的讲话稿
- 《时尚北京》杂志2025年第2期
- 人工智能-智能控制课件
- 员工素质模型(企业培训课件)
- 《青春杯辩论演讲》课件
- 美容店跨区域合作运营合同二零二五版
- 呼吸道对空气的处理课件
- 《个体社会化》课件
- 2025至2031年中国幼儿移动球篮行业投资前景及策略咨询研究报告
- 河北省建筑工程资料管理规程DB13(J) T 145 201
- 2023年广东广州期货交易所招聘笔试参考题库附带答案详解
- CKDMBD慢性肾脏病矿物质及骨代谢异常
- 苏教版科学(2017)六年级下册1-2《各种各样的能量》表格式教案
- 我国新能源汽车充电桩行业发展痛点和方向,机械工程论文
- 临床中药学-课件
- 2023年山东科技职业学院单招综合素质考试笔试模拟试题及答案解析
- 警察行政法课件
- 数学与生活小报
- 人力资源管理手册(全集)
- 2023高中物理步步高大一轮 第四章 专题强化七 圆周运动的临界问题
评论
0/150
提交评论