2024届山东省昌乐县第一中学数学高二第二学期期末统考模拟试题含解析_第1页
2024届山东省昌乐县第一中学数学高二第二学期期末统考模拟试题含解析_第2页
2024届山东省昌乐县第一中学数学高二第二学期期末统考模拟试题含解析_第3页
2024届山东省昌乐县第一中学数学高二第二学期期末统考模拟试题含解析_第4页
2024届山东省昌乐县第一中学数学高二第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省昌乐县第一中学数学高二第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若满足约束条件,则的最大值为()A.9 B.5 C.11 D.32.曲线在点处的切线方程为()A. B. C. D.3.已知随机变量,,若,,则()A.0.1 B.0.2 C.0.32 D.0.364.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于()A. B. C. D.5.利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”6.已知复数,则下列结论正确的是A.的虚部为i B.C.为纯虚数 D.7.已知向量,满足,,则向量在向量方向上的投影为()A.0 B.1C.2 D.8.已知实数,满足,则与的关系是()A. B. C. D.9.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c10.在极坐标系中,圆的圆心的极坐标是()A. B. C. D.11.由曲线与直线,所围成的封闭图形面积为()A. B. C.2 D.12.若函数在区间上单调递增,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.,则使成立的值是____________.14.若函数是偶函数,且在上是增函数,若,则满足的实数的取值范围是__________.15.已知可导函数,函数满足,若函数恰有个零点,则所有这些零点之和为__________.16.设,,,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球,则打6折;若摸到1个红球,则打7折;若没摸到红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受6折优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算.18.(12分)在中,角,,的对边分别为,,,点在直线上.(1)求角的值;(2)若,求的面积.19.(12分)5G网络是第五代移动通信网络,其峰值理论传输速度可达每8秒1GB,比4G网络的传输速度快数百倍.举例来说,一部1G的电影可在8秒之内下载完成.随着5G技术的诞生,用智能终端分享3D电影、游戏以及超高画质(UHD)节目的时代正向我们走来.某手机网络研发公司成立一个专业技术研发团队解决各种技术问题,其中有数学专业毕业,物理专业毕业,其它专业毕业的各类研发人员共计1200人.现在公司为提高研发水平,采用分层抽样抽取400人按分数对工作成绩进行考核,并整理得如上频率分布直方图(每组的频率视为概率).(1)从总体的1200名学生中随机抽取1人,估计其分数小于50的概率;(2)研发公司决定对达到某分数以上的研发人员进行奖励,要求奖励研发人员的人数达到30%,请你估计这个分数的值;(3)已知样本中有三分之二的数学专业毕业的研发人员分数不低于70分,样本中不低于70分的数学专业毕业的研发人员人数与物理及其它专业毕业的研发人员的人数和相等,估计总体中数学专业毕业的研发人员的人数.20.(12分)已知数列,的前n项和分别为,,,且.(1)求数列的前n项和;(2)求的通项公式.21.(12分)已知数列满足,.(Ⅰ)证明:数列是等差数列;(Ⅱ)求数列的前项和.22.(10分)如图,在一个水平面内,河流的两岸平行,河宽1(单位:千米)村庄A,B和供电站C恰位于一个边长为2(单位:千米)的等边三角形的三个顶点处,且A,C位于河流的两岸,村庄A侧的河岸所在直线恰经过BC的中点D.现欲在河岸上A,D之间取一点E,分别修建电缆CE和EA,EB.设∠DCE=θ,记电缆总长度为f(θ)(单位:千米).(1)求f(θ)的解析式;(2)当∠DCE为多大时,电缆的总长度f(θ)最小,并求出最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先作出不等式组所表示的可行域,然后平移直线,观察直线在轴上的截距取最大值时对应的最优解,将最优解代入函数即可得出答案。【题目详解】作出不等式组所表示的可行域如下图所示:联立,得,点的坐标为,平移直线,当该直线经过点,它在轴上的截距取最大值,此时,取最大值,即,故选:A.【题目点拨】本题考查线性规划问题,考查线性目标函数的最值问题,解题思路就是作出可行域,平移直线观察在坐标轴上的截距变化寻找最优解,是常考题型,属于中等题。2、C【解题分析】

求导,把分别代入导函数和原函数,得到斜率和切点,再计算切线方程.【题目详解】将代入导函数方程,得到将代入曲线方程,得到切点为:切线方程为:故答案选C【题目点拨】本题考查了曲线的切线,意在考查学生的计算能力.3、A【解题分析】

由求出,进而,由此求出.【题目详解】解:因为,,,所以,解得或(舍),由,所以.故选:A.【题目点拨】本题考查概率的求法,考查二项分布、正态分布等基础知识,考查推理论证能力、运算求解能力,是基础题.4、D【解题分析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:.点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为.5、A【解题分析】

根据题意知观测值,对照临界值得出结论.【题目详解】利用独立性检验的方法求得,对照临界值得出:有95%的把握认为“写作水平与喜好阅读有关”.故选A项.【题目点拨】本题考查了独立性检验的应用问题,是基础题.6、C【解题分析】

先利用复数的除法将复数化为一般形式,然后利用复数的基本知识以及四则运算法则来判断各选项的正误.【题目详解】,的虚部为,,为纯虚数,,故选C.【题目点拨】本题考查复数的四则运算、复数的概念、共轭复数等的理解,解题的关键就是将复数化为一般形式,借助相关概念进行理解,考查计算能力,属于基础题.7、D【解题分析】试题分析:在方向上的投影为,故选D.考点:向量的投影.8、C【解题分析】

设,,则,对进行平方展开化简得,代入得,两式相加即可.【题目详解】设,,则且,等式两边同时平方展开得:,即令等式中,化简后可得:两式相加可得故选:C【题目点拨】本题考查了代数式的计算化简求值,考查了换元法,属于中档题9、D【解题分析】

∵a=log54<log55=1,b=(log53)2<(log55)2=1,c=log45>log44=1,所以c最大单调增,所以又因为所以b<a所以b<a<c.故选D.10、B【解题分析】

先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可.【题目详解】圆化为,,配方为,因此圆心直角坐标为,可得圆心的极坐标为故选B【题目点拨】本题考查极坐标方程与直角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础.11、D【解题分析】根据题意作出所围成的图形,如图所示,图中从左至右三个交点分别为,所以题中所求面积为,故选D12、D【解题分析】

试题分析:,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴的取值范围是.故选D.考点:利用导数研究函数的单调性.二、填空题:本题共4小题,每小题5分,共20分。13、-4或2【解题分析】

当0时,;当时,.由此求出使成立的值.【题目详解】,当0时,解得当时,,解得故答案为-4或2.【题目点拨】本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.14、【解题分析】

根据偶函数性质得出在上是减函数,由此可得不等式.【题目详解】∵是偶函数,且在上是增函数,,∴在上是减函数,.又,∴,解得且.故答案为.【题目点拨】本题考查函数的奇偶性与单调性,由奇偶性和单调性结合起来解函数不等式,这种问题一类针对偶函数,一类针对奇函数,它们有固定的解题格式.如偶函数在上是增函数,可转化为,奇函数在上是增函数,首先把不等式转化为再转化为.15、【解题分析】

根据为奇函数得到关于对称,,关于对称,所以关于对称,计算得到答案.【题目详解】函数为奇函数关于对称函数满足关于对称关于对称恰有个零点所有这些零点之和为:故答案为:【题目点拨】本题考查了函数的中心对称,找出中心对称点是解题的关键.16、.【解题分析】

把分子展开化为,再利用基本不等式求最值.【题目详解】由,得,得,等号当且仅当,即时成立.故所求的最小值为.【题目点拨】使用基本不等式求最值时一定要验证等号是否能够成立.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)该顾客选择第一种抽奖方案更合算,详见解析【解题分析】

(1)选择方案一,利用积事件的概率公式计算出两位顾客均享受到免单的概率值;(2)选择方案一,计算出付款金额的分布列和数学期望值,选择方案二,计算出付款金额数学期望值,比较大小可得出结论.【题目详解】(1)选择方案一:若享受到6折优惠,则需要摸出2个红球,设顾客享受到6折优惠为事件A,则,所以两位顾客均享受到6折优惠的概率为;(2)若选择方案一,设付款金额为元,则可能的取值为0,600,700,1000,,,故的分布列为06007001000所以(元);若选择方案二,设摸到红球的个数为,付款金额为元,则,由已知可得,故,,所以(元),因为,所以该顾客选择第一种抽奖方案更合算.【题目点拨】本题考查独立事件的概率乘法公式,考查随机变量分布列与数学期望,在列随机变量的分布列时,要弄清变量所满足的分布列类型,结合相关概率公式进行计算,考查计算能力,属于中等题.18、(1);(2)【解题分析】

(1)代入点到直线的方程,根据正弦定理完成角化边,对比余弦定理求角;(2)将等式化简成“平方和为零”形式,计算出的值,利用面积公式计算的面积.【题目详解】解:(1)由题意得,由正弦定理,得,即,由余弦定理,得,结合,得.(2)由,得,从而得,所以的面积.【题目点拨】本题考查正、余弦定理的简单应用,难度较易.使用正弦定理进行角化边或者边化角的过程时,一定要注意“齐次”的问题.19、(1)0.1;(2)77.5;(3)540人.【解题分析】

(1)由题意可知,样本中随机抽取一人,分数小于50的概率是0.1,由此能估计总体中分数小于50的概率;(2)根据频率分布直方图,第六组的频率为0.4,第七组频率为0.2,由此能求出这个分数;(3)样本中不低于70分的研发人员人数为240人,从而样本中不低于70分的数学专业毕业的研发人员为120人,样本中有三分之二的数学专业毕业的研发人员分数不低于70分,从而样本中的是数学专业毕业的研发人员的人数为180人,由此能估计总体中数学专业毕业的研发人员的人数【题目详解】解:(1)由题意可知,样本中随机抽取一人,分数小于50的概率是,所以估计总体中分数小于50的概率0.1(2)根据频率分布直方图,第六组的频率为0.04×10=0.4,第七组频率为0.02×10=0.2,此分数为(3)因为样本中不低于70分的研发人员人数为400×(0.4+0.2)=240人,所以样本中不低于70分的数学专业毕业的研发人员为120人,又因为样本中有三分之二的数学专业毕业的研发人员分数不低于70分,所以样本中的是数学专业毕业的研发人员的人数120÷=180人,故估计总体中数学专业毕业的研发人员的人数为:1200×=540人【题目点拨】本题考查概率、频数的求法,考查频率分布直方图的性质,考查运算求解能力,是基础题.20、(1)(2)【解题分析】

(1)先将表示为,然后利用裂项求和法可求出;(2)先求出数列的前项和,于是得出,然后利用作差法可求出数列的通项公式.【题目详解】(1)因为,所以;(2)因为,所以.当时.;当时,.故【题目点拨】本题考查裂项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论