版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省凌源市第三中学高二数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若随机变量X的分布列:X01P0.2m已知随机变量且,,则a与b的值为(
)A. B. C. D.2.函数f(x)=x+1A. B. C. D.3.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B. C. D.4.已知是虚数单位,若复数满足,则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.6.的展开式中,的系数为()A.2 B.4 C.6 D.87.已知函数f(x)=13x3-12A.(0,1) B.(3,+∞) C.(0,2) D.(1,+∞)8.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这套题中选出套体验一下,则选出的3套题年份和编号都各不相同的概率为()A. B. C. D.9.已知函数f(x)=ax,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于()A.1 B.a C.2 D.a210.设抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为A. B. C. D.11.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有A.5种 B.10种C.20种 D.120种12.空间直角坐标系中,点关于点的对称点的坐标是A.(-10,2,8) B.(-10,2,-8) C.(5,2,-8) D.(-10,3,-8)二、填空题:本题共4小题,每小题5分,共20分。13.在空间中,已知一个正方体是12条棱所在的直线与一个平面所成的角都等于,则______.14.的不同正约数共有______个.15.设某弹簧的弹力与伸长量间的关系为,将该弹簧由平衡位置拉长,则弹力所做的功为_______焦.16.的展开式中常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)已知,求复数;(2)已知复数满足为纯虚数,且,求复数.18.(12分)从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望.19.(12分)一个盒子里装有个均匀的红球和个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为.(1)求,的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.20.(12分)在直角坐标系中,直线,圆.以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)若直线的极坐标方程为,设与的交点为、,求.21.(12分)设.(1)解不等式;(2)若不等式在上恒成立,求实数的取值范围.22.(10分)如图,在三棱柱中,侧面底面,,.(Ⅰ)求证:平面;(Ⅱ)若,,且与平面所成的角为,求二面角的平面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先根据随机变量X的分布列可求m的值,结合,,可求a与b的值.【题目详解】因为,所以,所以,;因为,,所以解得,故选C.【题目点拨】本题主要考查随机变量的期望和方差,注意两个变量之间的线性关系对期望方差的影响.2、A【解题分析】
可分类讨论,按x>0,x<-1,-1<x<0分类研究函数的性质,确定图象.【题目详解】x>0时,f(x)=logax是增函数,只有A、B符合,排除Cx<-1时,f(x)=-loga(-x)<0,只有A故选A.【题目点拨】本题考查由函数解析式选取图象,解题时可通过研究函数的性质排除一些选项,如通过函数的定义域,单调性、奇偶性、函数值的符号、函数的特殊值等排除错误的选项.3、D【解题分析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D.4、C【解题分析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】,,复数对应的点的坐标为,,在第三象限.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.5、D【解题分析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.6、D【解题分析】
由题意得到二项展开式的通项,进而可得出结果.【题目详解】因为的展开式的第项为,令,则,所以的系数为8.故选D【题目点拨】本题主要考查求指定项的系数问题,熟记二项式定理即可,属于常考题型.7、B【解题分析】
由三次函数的性质,求出导函数,确定函数的极值,最后由极大值大于0,极小值小于0可得a的范围.【题目详解】f'(x)=x易知x<-a或x>1时f'(x)>0,当-a<x<1时,f'(x)<0,∴f(x)极大值=f(-a)=∴16a3故选B.【题目点拨】本题考查函数的零点,考查用导数研究函数的极值.求极值时要注意在极值点的两侧,f'(x)的符号要相反.8、D【解题分析】
先计算出套题中选出套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案.【题目详解】通过题意,可知从这套题中选出套试卷共有种可能,而3套题年份和编号都各不相同共有种可能,于是所求概率为.选D.【题目点拨】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.9、A【解题分析】
由已知可得,再根据指数运算性质得解.【题目详解】因为以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,所以.因为f(x)=ax,所以f(x1)·f(x2)=.故答案为:A【题目点拨】本题主要考查指数函数的图像性质和指数运算,意在考查学生对这些知识的掌握水平.10、D【解题分析】分析:椭圆的右焦点为,抛物线的焦点坐标为,求解,再得出准线方程.详解:椭圆的右焦点为,抛物线的焦点坐标为,解得,得出准线方程点睛:抛物线的焦点坐标为,准线方程11、B【解题分析】
根据题意,可看做五个位置排列五个数,把“金、木、土、水、火”用“1,2,3,4,5”代替.根据相克原理,1不与2,5相邻,2不与1,3相邻,依次类推,用分布计数原理写出符合条件的情况.【题目详解】把“金、木、土、水、火”用“1,2,3,4,5”代替.1不与2,5相邻,2不与1,3相邻,所以以“1”开头的排法只有“1,3,5,2,4”或“1,4,2,5,3”两种,同理以其他数开头的排法都是2种,所以共有种.选B.【题目点拨】本题考查分步计数原理的应用,考查抽象问题具体化,注重考查学生的思维能力,属于中档题.12、B【解题分析】
直接利用中点坐标公式求解即可.【题目详解】设点关于点的对称点的坐标是,根据中点坐标公式可得,解得,所以点关于点的对称点的坐标是(-10,2,-8),故选B.【题目点拨】本题主要考查中点坐标公式的应用,意在考查对基本公式的掌握与应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
画出几何图形,可知面与12条棱所在的直线与一个平面所成的角都等于,在可求得.【题目详解】画出几何图形,可知面与12条棱所在的直线与一个平面所成的角都等于正方体面,与面所成的角为不妨设正方体棱长为,故在中由勾股定理可得:故答案为:.【题目点拨】本题考查了线面角求法,根据体积画出几何图形,掌握正方体结构特征是解本题的关键.属于基础题.14、【解题分析】
将进行质因数分解为,然后利用约数和定理可得出的不同正约数个数.【题目详解】将进行质因数分解为,因此,的不同正约数共有.故答案为:.【题目点拨】本题考查合数的正约数个数的计算,一般将合数质因数分解,并利用约数和定理进行计算,也可以采用列举法,考查计算能力,属于中等题.15、【解题分析】
用力沿着力的方向移动,则所做的功为,代入数据求得结果.【题目详解】弹力所做的功为:焦本题正确结果:【题目点拨】本题考查函数值的求解,关键是能够明确弹力做功的公式,属于基础题.16、15【解题分析】
把展开,求的系数,但无项,所以常数项为展开式中常数项乘以3.【题目详解】展开式中通项为,当时,;由于,无正整数解,所以常数项为15,填15.【题目点拨】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或或.【解题分析】
(1)设复数,根据复数的运算法则和复数相等得出关于、的方程组,解出这两个未知数,即可得出复数;(2)设复数,根据为纯虚数和列出关于、的方程组,解出这两个未知数,可得出复数.【题目详解】(1)设复数,由,得,根据复数相等得,解得,因此,;(2)设复数,则,由题意可得,.,得,所以有,解得或.因此,或或.【题目点拨】本题考查复数的求解,常将复数设为一般形式,根据复数的相关运算列举出方程组进行求解,考查运算求解能力,属于中等题.18、(1);(2)的分布列为
1
2
3
4
【解题分析】
(I)(II);;;;X的分布列为X
1
2
3
4
P
点评:对于古典概型的问题,主要是理解试验的基本事件空间,以及事件发生的基本事件空间利用比值来求解概率,结合排列组合的知识得到.而分布列的求解关键是对于各个概率值的求解,属于中档题.19、(1),(2)【解题分析】
(1)设该盒子里有红球个,白球个,利用古典概型、对立事件概率计算公式列出方程组,能求出,.(2)“一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率.【题目详解】解:(1)设该盒子里有红球个,白球个.根据题意得,解方程组得,,故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件.设“一次从盒子里任取3个球,取到的白球个数为3个”为事件,则设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件,则,故.因此,从盒子里任取3个球,取到的白球个数不少于红球个数的概率为.【题目点拨】本题考查实数值、概率的求法,考查古典概型、对立事件概率计算公式、互斥事件概率加法公式等基础知识,考查理解能力、运算求解能力,属于中档题.20、(1);(2).【解题分析】
(1)由可得出曲线的极坐标方程;(2)解法一:求出直线的普通方程,利用点到直线的距离公式计算出圆的圆心到直线的距离,再利用勾股定理计算出;解法二:设点、的极坐标分别为、,将圆的方程化为极坐标方程,并将直线的方程与圆的极坐标方程联立,得出关于的二次方程,列出韦达定理,可得出,从而计算出.【题目详解】(1)由直线,可得的极坐标方程为;(2)解法一:由直线的极坐标方程为,得直线的直角坐标方程为,即.圆的圆心坐标为,半径为,则圆心到直线的距离,;解法二:圆的普通方程为,化为极坐标方程得,设点、的极坐标分别为、,将直线的极坐标方程代入圆的极坐标方程得,,由韦达定理得,,因此,.【题目点拨】本题考查普通方程与极坐标方程的互化,同时也考查了直线与圆相交所得弦长的计算,可以计算出圆心到直线的距离,利用勾股定理来进行计算,也可以利用极坐标方程,利用极径之差来进行计算,考查化归与转化数学思想的应用,属于中等题.21、(1)(2)【解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业质量管理与提升合同
- 2024年度新型车库门材料供应合同
- 2024年度拆墙工程保险合同
- 2024年度国际文化旅游合作合同
- 2024年度城市供水系统井群扩建工程承包合同
- 软木工艺品市场发展现状调查及供需格局分析预测报告
- 2024年度婚礼拍摄服务合同
- 2024年度大连港口货物装卸服务投标合同
- 智能铁路监控行业市场调研分析报告
- 采矿用电笛项目评价分析报告
- 驻外人员补助标准
- 护士身体不适申请调换岗位申请书(通用6篇)
- 急救用品使用说明
- 农村经济管理 课件
- 畜产品质量安全讲解课件
- traveling-around-the-world的英语知识课件
- PS基础教程课件
- 光伏并网电站安全隐患排查治理管理规定
- 最新 麻醉相关危重症急抢救流程与流程图
- 健康体检的重大意义共35张课件
- 微景观制作课件
评论
0/150
提交评论