




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省淮安市田家炳中学高二数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于的一元二次不等式的解集为,则()A. B. C. D.2.若正数满足,则当取最小值时,的值为()A. B. C. D.3.若的展开式中含有项的系数为8,则()A.2 B. C. D.4.用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根5.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为(
)A.6,8 B.6,6 C.5,2 D.6,26.已知函数存在零点,则实数的取值范围是()A. B. C. D.7.小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为,小明投篮命中的概率为,且两人投篮相互独立,则小明获胜的概率为()A. B. C. D.8.已知实数成等比数列,则椭圆的离心率为A. B.2 C.或2 D.或9.若函数在处取得极小值,则的最小值为()A.3 B.4 C.5 D.610.复数,则对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知椭圆的左、右焦点分别为、,过且斜率为的直线交椭圆于、两点,则的内切圆半径为()A. B. C. D.12.已知命题,.则命题为()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.设圆锥的高是,母线长是,用过圆锥的顶点的平面去截圆锥,则截面积的最大值为_______.14.二项式的展开式中常数项为______用数字表示.15.在空间四边形中,若分别是的中点,是上点,且,记,则_____.16.已知复数满足,为虚数单位,则复数的模____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列的前项和为,求数列前项和.18.(12分)已知函数.(1)若,求函数的最大值;(2)令,讨论函数的单调区间;(3)若,正实数满足,证明.19.(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).(1)求样本容量和频率分布直方图中的(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望.20.(12分)设函数,.(1)若函数f(x)在处有极值,求函数f(x)的最大值;(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;21.(12分)选修4—5:不等式选讲设函数.(1)若,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.22.(10分)已知的展开式中,末三项的二项式系数的和等于121;(1)求n的值;(2)求展开式中系数最大的项;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据一元二次不等式与二次函数之间的关系,可得出一元二次不等式的解集为的等价条件.【题目详解】由于关于的一元二次不等式的解集为,则二次函数的图象恒在轴的下方,所以其开口向下,且图象与轴无公共点,所以,故选:D.【题目点拨】本题考查一元不等式在实数集上恒成立,要充分利用二次函数的开口方向和与轴的位置关系进行分析,考查推理能力,属于中等题.2、A【解题分析】
根据正数满足,利用基本不等式有,再研究等号成立的条件即可.【题目详解】因为正数满足,所以,所以,当且仅当,即时取等号.故选:A【题目点拨】本题主要考查基本不等式取等号的条件,还考查了运算求解的能力,属于基础题.3、A【解题分析】展开式中含有项的系数,,故选A.4、A【解题分析】分析:反证法证明命题时,假设结论不成立.至少有一个的对立情况为没有.故假设为方程没有实根.详解:结论“方程至少有一个实根”的假设是“方程没有实根.”点睛:反证法证明命题时,应假设结论不成立,即结论的否定成立.常见否定词语的否定形式如下:结论词没有至少有一个至多一个不大于不等于不存在反设词有一个也没有至少两个大于等于存在5、A【解题分析】
根据题意,应用乘原理,即可求解甲地经乙地到丙地的走法的种数,再由加法原理,即可得到甲地到丙地的所有走法的种数.【题目详解】由题意,从甲地经乙地到丙地的走法,根据分步乘法计数原理可得,共有种;再由分类加法计数原理,可得从甲地到丙地,共有种走法,故选:A.【题目点拨】本题主要考查了分类加法计数原理和分步乘法计数原理的应用问题,其中正确理解题意,合理选择计数原理是解答的关键,着重考查了分析问题和解答问题的能力.6、D【解题分析】
函数的零点就是方程的根,根据存在零点与方程根的关系,转化为两个函数交点问题,数形结合得到不等式,解得即可.【题目详解】函数存在零点,等价于方程有解,即有解,令,则,方程等价于与有交点,函数恒过定点(0,0),当时,与图象恒有交点,排除A,B,C选项;又当时,恰好满足时,,此时与图象恒有交点,符合题意;故选:D.【题目点拨】本题考查函数的零点与方程根的关系,此类问题通常将零点问题转化成函数交点问题,利用数形结合思想、分类讨论思想,求参数的范围,属于较难题.7、D【解题分析】
由题意可知,用表示小明、小红的进球数,所以当小明获胜时,进球情况应该是,由相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式,即可求得。【题目详解】由题意可知,用表示小明、小红的进球数,所以当小明获胜时,进球情况应该是,小明获胜的概率是故选D。【题目点拨】本题主要考查相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式的应用,意在考查学生分类讨论思想意识以及运算能力。8、A【解题分析】
由1,m,9构成一个等比数列,得到m=±1.当m=1时,圆锥曲线是椭圆;当m=﹣1时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【题目详解】∵1,m,9构成一个等比数列,∴m2=1×9,则m=±1.当m=1时,圆锥曲线+y2=1是椭圆,它的离心率是=;当m=﹣1时,圆锥曲线+y2=1是双曲线,故舍去,则离心率为.故选A.【题目点拨】本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.9、B【解题分析】
先对函数求导,根据题意,得到,再用导数的方法研究函数单调性,进而可求出结果.【题目详解】因为,所以,又函数在处取得极小值,所以,所以,因此,由得;由得,所以函数在上单调递减,在上单调递增;所以;故选B【题目点拨】本题主要考查导数的应用,根据导数的方法研究函数的单调性,最值等,属于常考题型.10、A【解题分析】
先求得的共轭复数,由此判断出其对应点所在象限.【题目详解】依题意,对应点为,在第一象限,故选A.【题目点拨】本小题主要考查共轭复数的概念,考查复数对应点所在象限,属于基础题.11、C【解题分析】分析:根据韦达定理结合三角形面积公式求出的面积,利用椭圆的定义求出三角形的周长,代入内切圆半径,从而可得结果.详解:椭圆的左、右焦点分别为,则的坐标为,过且斜率为的直线为,即,代入,得,则,故的面积,的周长,故的内切圆半径,故选C.点睛:本题主要考查利用椭圆的简单性质与椭圆定义的应用,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.12、D【解题分析】
利用全称命题的否定解答.【题目详解】命题,.命题为,.故选D【题目点拨】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
求出圆锥的底面半径,假设截面与圆锥底面交于,用表示出截面三角形的高,得出截面三角形的面积关于的表达式,利用基本不等式求出面积的最大值.【题目详解】解:∵圆锥的高是,母线长是,
∴底面半径,设过圆锥顶点的平面SCD与圆锥底面交于CD,过底面中心O作OA⊥CD于E,
设,则,,∴截面SCD的面积,故答案为:1.【题目点拨】本题考查了圆锥的结构特征,基本不等式的应用,属于中档题.14、-160【解题分析】二项式的展开式的通项为,.令,可得,即展开式中常数项为.答案:15、【解题分析】
由条件可得【题目详解】因为,分别是的中点所以所以故答案为:【题目点拨】本题考查的是空间向量的线性运算,较简单.16、.【解题分析】
由得,再利用复数的除法法则将复数表示为一般形式,然后利用复数的模长公式计算出.【题目详解】,,因此,,故答案为.【题目点拨】本题考查复数的除法、复数模的计算,解题的关键就是利用复数的四则运算法则将复数表示为一般形式来求解,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
由已知条件利用等差数列前项和公式求出公差和首项,由此能求出,且,当时,,当时,。【题目详解】解得,设从第项开始大于零,则,即当时,当时,综上有【题目点拨】本题考查数列的前项和的求法,是中档题,注意等差数列的函数性质的运用。18、(1)f(x)的最大值为f(1)=1.(2)见解析(3)见解析【解题分析】试题分析:(Ⅰ)代入求出值,利用导数求出函数的极值,进而判断最值;(Ⅱ)求出,求出导函数,分别对参数分类讨论,确定导函数的正负,得出函数的单调性;(Ⅲ)整理方程,观察题的特点,变形得,故只需求解右式的范围即可,利用构造函数,求导的方法求出右式的最小值.试题解析:(Ⅰ)因为,所以a=-2,此时f(x)=lnx-x2+x,f'(x)=-2x+1,由f'(x)=1,得x=1,∴f(x)在(1,1)上单调递增,在(1,+∞)上单调递减,故当x=1时函数有极大值,也是最大值,所以f(x)的最大值为f(1)=1.
(Ⅱ)g(x)=f(x)-ax2-ax+1,∴g(x)=lnx-ax2-ax+x+1,当a=1时,g'(x)>1,g(x)单调递增;当a>1时,x∈(1,)时,g'(x)>1,g(x)单调递增;x∈(,+∞)时,g'(x)<1,g(x)单调递减;当a<1时,g'(x)>1,g(x)单调递增;(Ⅲ)当a=2时,f(x)=lnx+x2+x,x>1,.由f(x1)+f(x2)+x1x2=1,即lnx1+x12+x1+lnx2+x22+x2+x2x1=1.从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),.令t=x2x1,则由φ(t)=t-lnt得,φ'(t)=.可知,φ(t)在区间(1,1)上单调递减,在区间(1,+∞)上单调递增.所以φ(t)≥1,所以(x1+x2)2+(x1+x2)≥1,正实数x1,x2,∴.19、(1);(2).【解题分析】分析:(1)由题得,再利用频率和为1求x的值.(2)先求出的可能取值为1,2,3,再求其对应的概率,再列分布列求期望.详解:(1)由题意可知,样本容量.(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,则,123故点睛:(1)本题主要考查频率分布直方图中的频数频率等的计算,考查离散型随机变量的分布列和期望,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2)……为的均值或数学期望,简称期望,求期望的关键是求随机变量的概率.20、(1)函数f(x)的最大值为(2)存在,详见解析【解题分析】
(1)函数f(x)在处有极值说明(2)对求导,并判断其单调性。【题目详解】解:(1)由已知得:,且函数f(x)在处有极值∴,∴∴,∴当时,,f(x)单调递增;当时,,f(x)单调递减;∴函数f(x)的最大值为.(2)由已知得:①若,则时,∴在上为减函数,∴在上恒成立;②若,则时,∴在[0,+∞)上为增函数,∴,不能使在上恒成立;③若,则时,,当时,,∴在上为增函数,此时,∴不能使在上恒成立;综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年VGA数码相机项目投资价值分析报告
- 2025年饼子机项目可行性研究报告
- 医疗设备维护与保养知识考点
- 《语文古诗文赏析:唐诗三百首》
- 绿色物流运输合作协议
- 2025年超大有机肥项目可行性研究报告
- 2025年组合气流分级器项目可行性研究报告
- 文言文知识在高中语文教学中的应用
- 媒体传播服务合同协议书
- 2025年电镀部件项目可行性研究报告
- 5G智能工厂建设规划
- 电缆隐蔽验收记录文本20种
- 一例化脓性链球菌感染的下肢静脉溃疡伤口循证护理
- Unit1+Art+Ancient+Reading+and+Thinking+Chinese+Art+on+show教学设计 高中英语人教选择性必修第三册
- 储能系统介绍-电化学能-储能电站
- 《PCB设计与制作(基于Altium-Designer)》教材配套电子课件电子教案(全)完整版课件
- 建筑装饰工程施工总平面布置图
- 外科护理系统考试题库汇总含答案(多选题10)
- 竖井工程地质勘察报告
- 职业道德与法律中职PPT完整全套教学课件
- 新建高中设计任务书
评论
0/150
提交评论