![江西省白鹭洲中学2024届高二数学第二学期期末预测试题含解析_第1页](http://file4.renrendoc.com/view10/M00/24/03/wKhkGWW7J8KAJMagAAINx-lfzs4162.jpg)
![江西省白鹭洲中学2024届高二数学第二学期期末预测试题含解析_第2页](http://file4.renrendoc.com/view10/M00/24/03/wKhkGWW7J8KAJMagAAINx-lfzs41622.jpg)
![江西省白鹭洲中学2024届高二数学第二学期期末预测试题含解析_第3页](http://file4.renrendoc.com/view10/M00/24/03/wKhkGWW7J8KAJMagAAINx-lfzs41623.jpg)
![江西省白鹭洲中学2024届高二数学第二学期期末预测试题含解析_第4页](http://file4.renrendoc.com/view10/M00/24/03/wKhkGWW7J8KAJMagAAINx-lfzs41624.jpg)
![江西省白鹭洲中学2024届高二数学第二学期期末预测试题含解析_第5页](http://file4.renrendoc.com/view10/M00/24/03/wKhkGWW7J8KAJMagAAINx-lfzs41625.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省白鹭洲中学2024届高二数学第二学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将点的直角坐标化成极坐标为()A. B. C. D.2.角的终边与单位圆交于点,则()A. B.- C. D.3.已知是定义在上的函数,且对任意的都有,,若角满足不等式,则的取值范围是()A. B. C. D.4.设是等差数列.下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.已知抛物线的参数方程为,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A,B两点,则线段AB的长为A. B. C.8 D.46.方程所表示的曲线是()A.双曲线的一部分 B.椭圆的一部分 C.圆的一部分 D.直线的一部分7.“”是“方程表示焦点在轴上的双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知角的终边经过点,则的值等于()A. B. C. D.9.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B. C. D.10.某校学生一次考试成绩X(单位:分)服从正态分布N(110,102),从中抽取一个同学的成绩ξ,记“该同学的成绩满足90<ξ≤110”为事件A,记“该同学的成绩满足80<ξ≤100”为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)=()附:X满足P(μ﹣σ<X≤μ+σ)=0.68,P(μ﹣2σ<X≤μ+2σ)=0.95,P(μ﹣3σ<ξ≤μ+3σ)=0.1.A. B. C. D.11.已知双曲线,若其过一、三象限的渐近线的倾斜角,则双曲线的离心率的取值范围是()A. B. C. D.12.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A.8种 B.10种 C.12种 D.14种二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线方程为_____14.若定义在上的函数,则________.15.若曲线在点处的切线斜率为1,则该切线方程为__________.16.若x,y满足约束条件则z=x−2y的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知(1+m)n(m是正实数)的展开式的二项式系数之和为128,展开式中含x项的系数为84,(I)求m,n的值(II)求(1+m)n(1-x)的展开式中有理项的系数和.18.(12分)已知椭圆:的左、右焦点分别为、,椭圆的离心率为.(1)求椭圆的标准方程;(2)过点的直线与椭圆相交于,两点,求的面积的最大值.19.(12分)如图,四棱锥中,,,,,,.(1)求证:;(2)求钝二面角的余弦值.20.(12分)几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:年龄受访人数56159105支持发展共享单车人数4512973(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;年龄低于35岁年龄不低于35岁合计支持不支持合计(Ⅱ)若对年龄在,的被调查人中各随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为,求随机变量的分布列及数学期望.参考数据:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828参考公式:,其中.21.(12分)的内角的对边分别为已知.(1)求角和边长;(2)设为边上一点,且,求的面积.22.(10分)已知,函数.(1)讨论函数在上的单调性;(2)若在内有解,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:求出,且在第三象限,由此能将点M的直角坐标化成极坐标.详解:点M的直角坐标,,在第三象限,.将点M的直角坐标化成极坐标.故选B.点睛:极坐标与直角坐标的互化,常用方法有代入法、平方法等,还经常会用到同乘(同除以)ρ等技巧.2、D【解题分析】
根据三角函数的定义,求得,再由余弦的倍角公式,即可求解.【题目详解】由题意,角的终边与单位圆交于点,则,由三角函数的定义,可得,则,故选D.【题目点拨】本题主要考查了三角函数的定义,以及余弦的倍角公式的化简、求值,其中解答中熟记三角函数的定义,以及余弦的倍角公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.3、A【解题分析】
构造新函数,由可得为单调减函数,由可得为奇函数,从而解得的取值范围.【题目详解】解:令因为,所以为R上的单调减函数,又因为,所以,即,即,所以函数为奇函数,故,即为,化简得,即,即,由单调性有,解得,故选A.【题目点拨】本题考查了函数性质的综合运用,解题的关键是由题意构造出新函数,研究其性质,从而解题.4、C【解题分析】
先分析四个答案,A举一反例,而,A错误,B举同样反例,,而,B错误,D选项,故D错,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,故选C.考点:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重点是对知识本质的考查.5、C【解题分析】分析:先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去,根据韦达定理求得的值,进而根据抛物线的定义可知求得答案.详解:抛物线的参数方程为,普通方程为,抛物线焦点为,且直线斜率为1,
则直线方程为,代入抛物线方程得,设根据抛物线的定义可知|,
故选:C.点睛:本题主要考查了直线与圆锥曲线的关系,抛物线的简单性质.对学生基础知识的综合考查.关键是:将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,利用弦长公式即可求得|AB|值,从而解决问题.6、B【解题分析】
方程两边平方后可整理出椭圆的方程,由于的值只能取非负数,推断出方程表示的曲线为一个椭圆的一部分.【题目详解】解:两边平方,可变为,即,表示的曲线为椭圆的一部分;故选:.【题目点拨】本题主要考查了曲线与方程.解题的过程中注意的范围,注意数形结合的思想.7、B【解题分析】
解得方程表示焦点在轴上的双曲线的m的范围即可解答.【题目详解】表示焦点在轴上的双曲线⇔,解得1<m<5,故选B.【题目点拨】本题考查双曲线的方程,是基础题,易错点是不注意8、A【解题分析】
由三角函数的定义可求出的值.【题目详解】由三角函数的定义可得,故选A.【题目点拨】本题考查三角函数的定义,解题的关键在于三角函数的定义进行计算,考查计算能力,属于基础题.9、D【解题分析】
连结,可证明是平行四边形,则,故的余弦值即为异面直线和所成角的余弦值,利用余弦定理可得结果.【题目详解】连结,由题得,故是平行四边形,,则的余弦值即为所求,由,可得,,故有,解得,故选D.【题目点拨】本题考查异面直线的夹角的余弦值和余弦定理,常见的方法是平移直线,让两条直线在同一平面中,再求夹角的余弦值.10、A【解题分析】
利用条件概率公式,即可得出结论.【题目详解】由题意,,,所以,故选A项.【题目点拨】本题考查条件概率的计算,正态分布的简单应用,属于简单题.11、B【解题分析】分析:利用过一、三象限的渐近线的倾斜角θ∈[,],可得1≤≤,即可求出双曲线的离心率e的取值范围.详解:双曲线=1(a>0,b>0)的一条渐近线方程为y=x,由过一、三象限的渐近线的倾斜角θ∈[,],∴tan≤≤tan,∴1≤≤,∴1≤≤3,∴2≤1+≤4,即2≤e2≤4,解得≤e≤2,故选:B.点睛:求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.12、B【解题分析】
根据表格进行逻辑推理即可得到结果.【题目详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【题目点拨】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用导数的几何意义,求出切线斜率,由点斜式即可求得切线方程。【题目详解】因为,所以,切点坐标为,故切线方程为:即。【题目点拨】本题主要考查利用导数的几何意义求函数曲线在某点处的切线方程。14、【解题分析】由定积分的几何意义可得,是以原点为圆心,以为半径的圆的面积的一半,,,故答案为.15、【解题分析】
求得函数的导数,可得切线的斜率,解方程可得切点的横坐标,进而得到切点坐标,由点斜式方程可得切线的方程.【题目详解】的导数为,在点处的切线斜率为1,可得,所以,切点纵坐标为:,可得切点为,即有切线的方程为,即为.故答案为.【题目点拨】本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.16、【解题分析】
试题分析:由得,记为点;由得,记为点;由得,记为点.分别将A,B,C的坐标代入,得,,,所以的最小值为.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)0.【解题分析】分析:(1)先根据二项式系数性质得,解得n,再根据二项式展开式的通项公式得含x项的系数为,解得m,(2)先根据二项式展开式的通项公式得,再求的展开式有理项的系数和.详解:(1)由题意可知,,解得含项的系数为,(2)的展开项通项公式为的展开式有理项的系数和为0点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.18、(1);(2).【解题分析】
(1)根据焦点坐标可得,根据离心率求得,结合,求得,则问题得解;(2)设出直线方程,联立椭圆方程,结合韦达定理,即可容易求得结果.【题目详解】(1)由题可知,,又因为,故可得;由,可得.故椭圆方程为.(2)容易知直线的斜率不为零,故可设直线的方程为,联立椭圆方程可得:,设两点坐标为,故可得则,故的面积令,,故,又在区间上单调递增,故在区间上单调递减,故,当且仅当,即时取得最大值.故面积的最大值为.【题目点拨】本题考查椭圆方程的求解,涉及椭圆中三角形面积的最值问题,属综合中档题.19、(1)见解析;(2)【解题分析】
(1)推导出,,从而平面,由此能证明.(2)过点在平面内作直线,由(1)以点为坐标原点建立空间直角坐标系,利用向量法求出钝二面角的余弦值.【题目详解】(1)证明:在中,,且,由余弦定理,得.过点作,可知四边形是矩形,,且.又,故,于是有,即.又,且,平面,.(2)过点在平面内作直线,由(1)可知,和直线两两垂直,如图,以点为坐标原点建立空间直角坐标系.由题意,可得,,,,.设平面的法向量为,由得令,得,,即.再取平面的一个法向量.设二面角的大小为,则,即二面角的余弦值为.【题目点拨】本题考查了线面垂直的判定定理、定义,空间向量法求面面角,解题的关键是建立恰当的空间直角坐标系,属于基础题.20、(Ⅰ)见解析;(Ⅱ)见解析.【解题分析】试题分析:(1)由题意可知a=30,b=10,c=5,d=5,代入:。(2)年龄在的5个受访人中,有1人支持发展共享单车;年龄在的6个受访人中,有5人支持发展共享单车.随机变量的所有可能取值为2,3,1.所以,,.试题解析:(Ⅰ)根据所给数据得到如下列联表:年龄低于35岁年龄不低于35岁合计支持301010不支持5510合计351550根据列联表中的数据,得到的观
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届高中语文一轮复习学案44 分析叙述视角、叙述人称和叙述腔调(热点考法)(含答案)
- 社交媒体内容创作的趋势与挑战
- DB65-T 4874-2024 公路除冰雪作业技术规范
- 大学教师年终总结
- 语文-河南省部分重点高中九师联盟2024-2025学年高三下学期2月开学考试试题和答案
- 知识产权利益分享与法规解析
- 租用潜水船及潜水人员合同范本
- 玻璃雨棚施工合同范本
- 手机靓号抵押合同范本
- 光伏发电屋顶租赁协议书范本
- 含新能源发电接入的电力系统低频振荡阻尼控制研究综述
- 应急小组成立通知
- 关于如何做好清单招标控制价的几点建议
- 地铁前期工程交通疏解施工方案
- NB-T32019-2013太阳能游泳池加热系统技术规范
- 小学升初中六年级数学考试试卷含答案(达标题)
- 2024年长沙航空职业技术学院单招职业适应性测试题库完整
- 医疗器械市场部年终总结
- 4M变更管理培训
- DBJ33-T 1009-2023 园林植物种植与养护技术规程
- 2024年岳阳职业技术学院单招职业适应性测试题库及答案解析
评论
0/150
提交评论