




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021中考备战年湖南省张家界市中考数学试卷
一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四
个选项中,只有一项是符合题目要求的
1.(3.00分)2021中考备战的绝对值是()
A.2021中考备战B.-2021中考备战C.D.一」
20182018
2.(3.00分)若关于x的分式方程变的解为x=2,则m的值为()
xT
A.5B.4C.3D.2
3.(3.00分)下列图形中,既是中心对称图形,又是轴对称图形的是()
4.(3.00分)下列运算正确的是()
A.a2+a=2a3B.^2=aC.(a+1)2=a2+lD.(a3)2=a6
5.(3.00分)若一组数据ai,az,a3的平均数为4,方差为3,那么数据ai+2,
的平均数和方差分别是
a2+2,a3+2()
A.4,3B.6,3C.3,4D.6,5
6.(3.00分)如图,AB是。。的直径,弦CDJ_AB于点E,OC=5cm,CD=8cm,
则AE=()
7.(3.00分)下列说法中,正确的是()
A.两条直线被第三条直线所截,内错角相等
B.对角线相等的平行四边形是正方形
C.相等的角是对顶角
D.角平分线上的点到角两边的距离相等
8.(3.00分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,
28=256...,贝IJ2+22+23+24+25+...+21018的末位数字是()
A.8B.6C.4D.0
二、填空题(本大题共6个小题,每小题3分,满分18分)
9.(3.00分)因式分解:a2+2a+l=.
10.(3.00分)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造
芯片的最小工艺水平是16纳米,已知1纳米=109米,用科学记数法将16纳米
表示为米.
11.(3.00分)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,
若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为工,则袋子内共有
10
乒乓球的个数为.
12.(3.00分)如图,将^ABC绕点A逆时针旋转150。,得到^ADE,这时点B,
C,D恰好在同一直线上,则NB的度数为.
13.(3.00分)关于x的一元二次方程x2-kx+l=0有两个相等的实数根,则
k=.
14.(3.00分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),
点B与点D都在反比例函数y=2(x>0)的图象上,则矩形ABCD的周长为.
三、解答题(本大题共9个小题,共计58分,解答应写出文字说明、证明过程
或演算过程)
15.(5.00分)(V3-1)°+(-1)2-4sin60°+V12.
16.(5.00分)解不等式组12X-1<5,写出其整数解.
[x+2〉l
17.(5.00分)在矩形ABCD中,点E在BC上,AE=AD,DF_LAE,垂足为F.
(1)求证.DF=AB;
(2)若NFDC=30°,且AB=4,求AD.
18.(5.00分)列方程解应用题
《九章算术》中有“盈不足术"的问题,原文如下:"今有共黄羊,人出五,不足
四十五;人出七,不足三.问人数、羊^各黑何?"题意是:若干人共同出资买
羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?
19.(6.00分)阅读理解题
在平面直角坐标系xOy中,点P(xo,yo)到直线Ax+By+C=0(A2+B2#0)的距离
|Ax+By+C|
公式为:00
2
7A+B2
例如,求点P(1,3)到直线4x+3y-3=0的距离.
解:由直线4x+3y-3=0知:A=4,B=3,C=-3
所以P(1,3)到直线4x+3y-3=0的距离为:d=14X1+3X3-31-2
V42+32
根据以上材料,解决下列问题:
(1)求点Pi(0,0)到直线3x-4y-5=0的距离.
(2)若点P2(1,0)到直线x+y+C=0的距离为血,求实数C的值.
20.(6.00分)如图,点P是。0的直径AB延长线上一点,且AB=4,点M为窟
上一个动点(不与A,B重合),射线PM与<30交于点N(不与M重合)
(1)当M在什么位置时,^MAB的面积最大,并求出这个最大值;
(2)求证:△PANs^PMB.
N
21.(8,00分)今年是我市全面推进中小学校"社会主义核心价值观”教育年.某
校对全校学生进行了中期检测评价,检测结果分为A(优秀)、B(良好)、C(合
格)、D(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行
数据处理,制作了如下所示不完整的统计表(图1)和统计图(图2).
等级频数频率
A0.3
350.35
c31b
口40.04
请根据图提供的信息,解答下列问题:
(1)本次随机抽取的样本容量为
(2)a=,b=;
(3)请在图2中补全条形统计图;
(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到"A(优秀)”
等级的学生人数为人.
22.(8.00分)2017年9月8日-10日,第六届翼装飞行世界锦标赛在我市天门
山风景区隆重举行,来自全球11个国家的16名选手参加了激烈的角逐.如图,
某选手从离水平地面1000米高的A点出发(AB=1000米),沿俯角为30。的方向
直线飞行1400米到达D点,然后打开降落伞沿俯角为60。的方向降落到地面上
的C点,求该选手飞行的水平距离BC.
23.(10.00分)如图,已知二次函数y=ax2+l(aWO,a为实数)的图象过点A
(-2,2),一次函数y=kx+b(kWO,k,b为实数)的图象I经过点B(0,2).
(1)求a值并写出二次函数表达式;
(2)求b值;
(3)设直线I与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,
试证明:MB=MC;
(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说
2021中考备战年湖南省张家界市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四
个选项中,只有一项是符合题目要求的.)
1.(3.00分)2021中考备战的绝对值是()
A.2021中考备战B.-2021中考备战C.-J_D.一
20182018
【分析】直接利用绝对值的性质分析得出答案.
【解答】解:2021中考备战的绝对值是:2021中考备战.
故选:A.
2.(3.00分)若关于x的分式方程靖_=1的解为x=2,则m的值为()
X-1
A.5B.4C.3D.2
【分析】直接解分式方程进而得出答案.
【解答】解:•.•关于X的分式方程变3=1的解为x=2,
X-1
x=m-2=2,
解得:m=4.
故选:B.
3.(3.00分)下列图形中,既是中心对称图形,又是轴对称图形的是()
【分析】根据轴对称图形与中心对称图形的概念进行判断即可.
【解答】解:A、不是轴对称图形,是中心对称图形.故错误;
B、是轴对称图形,不是中心对称图形.故错误;
C、是轴对称图形,也是中心对称图形.故正确;
D、是轴对称图形,不是中心对称图形.故错误.
故选:C.
4.(3.00分)下列运算正确的是()
A.a2+a=2a3B.^2=aC.(a+1)2=a2+lD.(a3)2=a6
【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字
母和字母的指数不变;(aNO);完全平方公式:(a±b)2=a2±2ab+b2;
累的乘方法则:底数不变,指数相乘进行计算即可.
【解答】解:A、a?和a不是同类项,不能合并,故原题计算错误;
B、#忆|,故原题计算错误;
C(a+1)2=a2+2a+l,故原题计算错误;
D、(a3)2=a6,故原题计算正确;
故选:D.
5.(3.00分)若一组数据ai,a2,a3的平均数为4,方差为3,那么数据ai+2,
a2+2,a3+2的平均数和方差分别是()
A.4,3B.6,3C.3,4D.6,5
【分析】根据数据ai,a2,a3的平均数为4可知l(a1+a2+a3)=4,据此可得出工
33
(a1+2+a2+2+a3+2)的值;再由方差为3可得出数据ai+2,a2+2,as+2的方差.
【解答】解:•••数据ai,az,a3的平均数为4,
(ai+az+a3)=4,
3
(ai+2+a2+2+a3+2)=—(ai+az+a3)+2=4+2=6,
33
,数据ai+2,az+2,a3+2的平均数是6;
;数据ai,a2,a3的方差为3,
[(ai-4)2+(32-4)2+(33~4)2]=3,
3
Aai+2,a2+2,as+2的方差为:
—[(ai+2-6)2+(Q2+2-6)2+(aj+2-6)2]
3
=—[(ai-4)2+(32-4)2+(33-4)2]
3
=3.
故选:B.
6.(3.00分)如图,AB是。。的直径,弦CD_LAB于点E,OC=5cm,CD=8cm,
则AE=()
A.8cmB.5cmC.3cmD.2cm
【分析】根据垂径定理可得出CE的长度,在RtaOCE中,利用勾股定理可得出
0E的长度,再利用AE=AO+OE即可得出AE的长度.
【解答】解:,弦CD_LAB于点E,CD=8cm,
.*.CE=lcD=4cm.
2
在RtAOCE中,0C=5cm,CE=4cm,
••0E—Qp2Qg2=3cm,
.\AE=AO+OE=5+3=8cm.
故选:A.
7.(3.00分)下列说法中,正确的是()
A.两条直线被第三条直线所截,内错角相等
B.对角线相等的平行四边形是正方形
C.相等的角是对顶角
D.角平分线上的点到角两边的距离相等
【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平
分线性质逐个判断即可.
【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选
项不符合题意;
B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;
C、相等的角不一定是对顶角,错误,故本选项不符合题意;
D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;
故选:D.
8.(3.00分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,
28=256...,则2+22+23+24+25+...+21018的末位数字是()
A.8B.6C.4D.0
【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2021
中考备战小4=504...2,得出22。21中考备战的个位数字与22的个位数字相同是4,进而
得出答案.
【解答】解:..2的个位数字是2,4,8,6四个一循环,2021中考备战+4=504...2,
••.22。21中考备战的个位数字与22的个位数字相同是4,
故2+22+23+24+25+...+21018的末位数字是2+4+8+6+...+2+4的尾数,
则2+22+23+24+25+...+21°18的末位数字是:2+4=6.
故选:B.
二、填空题(本大题共6个小题,每小题3分,满分18分)
9.(3.00分)因式分解:a2+2a+l=(a+1)2.
【分析】直接利用完全平方公式分解因式得出答案.
【解答】解:a2+2a+l=(a+1)2.
故答案为:(a+l)2.
10.(3.00分)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造
芯片的最小工艺水平是16纳米,已知1纳米=109米,用科学记数法将16纳米
表示为1.6X108米.
【分析】由1纳米=109米,可得出16纳米=1.6X108米,此题得解.
【解答】解:•••!纳米=109米,
A16纳米=1.6X10y米.
故答案为:1.6X108.
11.(3.00分)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,
若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为工,则袋子内共有
10
乒乓球的个数为10.
【分析】设有X个黄球,利用概率公式可得上=工,解出X的值,可得黄球数
3+x10
量,再求总数即可.
【解答】解:设有x个黄球,由题意得:上=工,
3+x10
解得:x=7,
7+3=10,
故答案为:10.
12.(3.00分)如图,将ZkABC绕点A逆时针旋转150。,得到aADE,这时点B,
C,D恰好在同一直线上,则NB的度数为15。.
【分析】先判断出NBAD=150。,AD=AB,再判断出4BAD是等腰三角形,最后用
三角形的内角和定理即可得出结论.
【解答】解::将aABC绕点A逆时针旋转150。,得到^ADE,
AZBAD=150°,AD=AB,
•.•点B,C,D恰好在同一直线上,
.二△BAD是顶角为150。的等腰三角形,
/.ZB=ZBDA,
/.ZB=1(180°-ZBAD)=15°,
2
故答案为:15°.
13.(3,00分)关于x的一元二次方程x2-kx+l=0有两个相等的实数根,则k=土
2.
【分析】根据题意可得△=(),进而可得k2-4=0,再解即可.
【解答】解:由题意得:△=!<?-4=0,
解得:k=±2,
故答案为:±2.
14.(3.00分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),
点B与点D都在反比例函数y=2(x>0)的图象上,则矩形ABCD的周长为12.
【分析】根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐
标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长
公式计算即可.
【解答】解:•••四边形ABCD是矩形,点A的坐标为(2,1),
...点D的横坐标为2,点B的纵坐标为1,
当x=2时,y=—=3,
2
当y=l时,x=6,
则AD=3-1=2,AB=6-2=4,
则矩形ABCD的周长=2X(2+4)=12,
故答案为:12.
三、解答题(本大题共9个小题,共计58分,解答应写出文字说明、证明过程
或演算过程)
15.(5.00分)(遂-1)°+(-1)2-4sin60°+V12.
【分析】直接利用负指数累的性质以及零指数基的性质以及特殊角的三角函数
值、二次根式的性质分别化简得出答案.
【解答】解:原式=1+1-4X返+2会
2
=2.
16.(5.00分)解不等式组12XT<5,写出其整数解.
lx+2>l
【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
[2x-l<5①
【解答】解:
卜+2》1②
•.♦解不等式①得:xV3,
解不等式②得:x2-l,
二不等式组的解集为-1WXV3,
二不等式组的整数解为-1,0,1,2.
17.(5.00分)在矩形ABCD中,点E在BC上,AE=AD,DF1AE,垂足为F.
(1)求证.DF=AB;
(2)若NFDC=30°,且AB=4,求AD.
【分析】(1)利用"AAS”证△ADFWZXEAB即可得;
(2)由NADF+NFDC=90°、NDAF+NADF=90°得NFDC=NDAF=30°,据此知
AD=2DF,根据DF=AB可得答案.
【解答】证明:(1)在矩形ABCD中,•..AD〃BC,
,ZAEB=ZDAF,
XVDF1AE,
.,.ZDFA=90°,
;.NDFA=NB,
又;AD=EA,
.,.△ADF^AEAB,
,DF=AB.
(2)VZADF+ZFDC=90°,ZDAF+ZADF=90°,
/.ZFDC=ZDAF=30o,
;.AD=2DF,
VDF=AB,
,AD=2AB=8.
18.(5.00分)列方程解应用题
《九章算术》中有“盈不足术"的问题,原文如下:"今有共黄羊,人出五,不足
四十五;人出七,不足三.问人数、羊^各黑何?"题意是:若干人共同出资买
羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?
【分析】可设买羊人数为未知数,等量关系为:5X买羊人数+45=7X买羊人数+3,
把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.
【解答】解:设买羊为x人,则羊价为(5X+45)元钱,
5x+45=7x+3,
x=21(人),
5X21+45=150(员),
答:买羊人数为21人,羊价为150元.
19.(6.00分)阅读理解题
在平面直角坐标系xOy中,点P(xo,yo)到直线Ax+By+C=0(A2+B2#0)的距离
公式为:dJAxo+Byo+吗
例如,求点P(1,3)到直线4x+3y-3=0的距离.
解:由直线4x+3y-3=0知:A=4,B=3,C=-3
所以P(1,3)到直线4x+3y-3=0的距离为:d=I4X1+3X3~3|-2
A/42+32
根据以上材料,解决下列问题:
(1)求点P1(0,0)到直线3x-4y-5=o的距离.
(2)若点P2(1>0)到直线x+y+C=0的距离为血,求实数C的值.
【分析】(1)根据点到直线的距离公式即可求解;
(2)根据点到直线的距离公式,列出方程即可解决问题.
【解答】解3X4X5
:(1)d=l)°-°-l-l;
V32+42
(2)、R=|1X1+1XO+1|,
V2
・•.|C+1|=2,
C+l=±2,
Ci=-3,C2=l.
20.(6.00分)如图,点P是。0的直径AB延长线上一点,且AB=4,点M为窟
上一个动点(不与A,B重合),射线PM与€)0交于点N(不与M重合)
(1)当M在什么位置时,^MAB的面积最大,并求出这个最大值;
(2)求证:△PANs^PMB.
【分析】(1)当M在弧AB中点时,三角形MAB面积最大,此时OM与AB垂直,
求出此时三角形面积最大值即可;
(2)由同弧所对的圆周角相等及公共角,利用两对角相等的三角形相似即可得
证.
【解答】解:(1)当点M在定的中点处时,^MAB面积最大,止匕时OMLAB,
VOM=17\B=1X4=2,
22
•e•SAABM=1AB・OM」X4X2=4;
22
(2)VZPMB=ZPAN,/P=NP,
/.△PAN^APMB.
21.(8.00分)今年是我市全面推进中小学校"社会主义核心价值观"教育年.某
校对全校学生进行了中期检测评价,检测结果分为A(优秀)、B(良好)、C(合
格)、D(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行
数据处理,制作了如下所示不完整的统计表(图1)和统计图(图2).
等级频数频率
Aa0.3
B350.35
C31b
D40.04
请根据图提供的信息,解答下列问题:
(1)本次随机抽取的样本容量为100;
(2)a=30,b=0.31;
(3)请在图2中补全条形统计图;
(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到"A(优秀)”
【分析】(1)根据统计图表中的数据可以求得本次的样本容量;
(2)根据(1)中的样本容量和表格中的数据可以求得a、b的值;
(3)根据a的值可以将条形统计图补充完整;
(4)根据统计图中的数据可以解答本题.
【解答】解:⑴本次随机抽取的样本容量为:354-0.35=100,
故答案为:100;
(2)a=100X0.3=30,
b=314-100=0.31,
故答案为:30,0.31;
(3)由(2)知a=30,
补充完整的条形统计图如右图所示;
(4)800X0.3=240(人),
故答案为:240.
22.(8.00分)2017年9月8日-10日,第六届翼装飞行世界锦标赛在我市天门
山风景区隆重举行,来自全球11个国家的16名选手参加了激烈的角逐.如图,
某选手从离水平地面1000米高的A点出发(AB=1000米),沿俯角为30。的方向
直线飞行1400米到达D点,然后打开降落伞沿俯角为60。的方向降落到地面上
的C点,求该选手飞行的水平距离BC.
【分析】如图,作DE1AB于E.DF1BC于F,根据题意得到NADE=30。,ZCDF=30°,
利用含30度的直角三角形三边的关系计算出AE=1AD=700,DE=«AE=700F,
则BE=300,所以DF=300,BF=700^,再在RtACDF中计算出CF,然后计算BF
和CF的和即可.
【解答】解:如图,作DELAB于E,DF_LBC于F,ZADE=30°,ZCDF=30°,
在RtAADE中,AE=L\DJX1400=700,
22
DE=CAE=700F,
:.BE=AB-AE=1000-700=300,
,DF=300,BF=700盗,
在RtZ\CDF中,CF=韭DF&lx300=100方,
33
,BC=700V3+100V3=800V3.
答:选手飞行的水平距离BC为800bm.
23.(10.00分)如图,已知二次函数y=ax2+l(aWO,a为实数)的图象过点A
(-2,2),一次函数y=kx+b(kWO,k,b为实数)的图象I经过点B(0,2).
(1)求a值并写出二次函数表达式;
(2)求b值;
(3)设直线I与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,
试证明:MB=MC;
(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说
【分析】(1)将点A的坐标代入二次函数表达式中可求出a值,进而可得出二次
函数表达式;
(2)将点B的坐标代入一次函数表达式中可求出b值;
(3)过点M作ME,y轴于点E,设点M的坐标为(x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年考试备考技巧试题及答案
- 明确方向2024年秘书证考试试题及答案
- 初中物理全面复习试题及答案
- 2024年档案管理流程中的优化策略试题及答案
- 第14课 开始做小报啦(教案)三年级上册信息技术华师大版
- 2024年多媒体应用设计师的自学计划试题及答案
- 全面掌握的2024年统计师考试试题答案
- 咖啡师创新意识培养试题及答案
- 2024年记者证考试细节研讨试题及答案
- 小学综合实践活动
- DB64∕1539-2020 复合保温板结构一体化系统应用技术规程
- DIN1783厚度在0.35mm以上冷轧的铝及铝塑性合金带材和板材、尺寸
- 桥门式起重机司机培训教材课件
- Model5000功率计(介绍及操作)
- 现场总线技术03 PROFIBUS总线
- 义务教育(英语)新课程标准(2022年修订版)
- 混合痔病历模板
- “冯茹尔”杯2022年江苏省“化学与可持续发展”化学活动周高中化学竞赛试题
- 员工食堂5月份菜谱
- 中国、俄罗斯、欧美电子管型号代换
- 基于语音信号去噪处理的FIR滤波器设计
评论
0/150
提交评论