2024届山东省威海市文登区八校九年级数学第一学期期末复习检测模拟试题含解析_第1页
2024届山东省威海市文登区八校九年级数学第一学期期末复习检测模拟试题含解析_第2页
2024届山东省威海市文登区八校九年级数学第一学期期末复习检测模拟试题含解析_第3页
2024届山东省威海市文登区八校九年级数学第一学期期末复习检测模拟试题含解析_第4页
2024届山东省威海市文登区八校九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省威海市文登区八校九年级数学第一学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知二次函数自变量的部分取值和对应函数值如表:…-2-10123……-503430…则在实数范围内能使得成立的取值范围是()A. B. C. D.或2.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为()A.2 B.4 C.8 D.113.下列各数:-2,,,,,,0.3010010001…,其中无理数的个数是()个.A.4 B.3 C.2 D.14.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<25.抛物线y=2x2,y=﹣2x2,y=2x2+1共有的性质是()A.开口向上 B.对称轴都是y轴C.都有最高点 D.顶点都是原点6.如图,在方格纸中,点A,B,C都在格点上,则tan∠ABC的值是()A.2 B. C. D.7.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D8.如图,⊙的半径垂直于弦,是优弧上的一点(不与点重合),若,则等于()A. B. C. D.9.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形 B.矩形 C.菱形 D.正方形10.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是()A.(2,0) B.(-3,0) C.(-2,0) D.(3,0)11.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元 B.8.45×103亿元 C.8.45×104亿元 D.84.5×102亿元12.如图,抛物线的开口向上,与轴交点的横坐标分别为和3,则下列说法错误的是()A.对称轴是直线 B.方程的解是,C.当时, D.当,随的增大而增大二、填空题(每题4分,共24分)13.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.14.已知方程的两实数根的平方和为,则k的值为____.15.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.16.若x=是一元二次方程的一个根,则n的值为____.17.已知实数,是方程的两根,则的值为________.18.计算sin45°的值等于__________三、解答题(共78分)19.(8分)先化简,再求值.,请从一元二次方程x2+2x-3=0的两个根中选择一个你喜欢的求值.20.(8分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.21.(8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,22.(10分)(1)如图①,点,,在上,点在外,比较与的大小,并说明理由;(2)如图②,点,,在上,点在内,比较与的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点,,点在轴上,试求当度数最大时点的坐标.23.(10分)已知反比例函数为常数,)的图象经过两点.(1)求该反比例函数的解析式和的值;(2)当时,求的取值范围;(3)若为直线上的一个动点,当最小时,求点的坐标.24.(10分)计算:|﹣1|+2sin30°﹣(π﹣3.14)0+()﹣125.(12分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.26.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据y=0时的两个x的值可得该二次函数的对称轴,根据二次函数的对称性可得x=4时,y=5,根据二次函数的增减性即可得图象的开口方向,进而可得答案.【详解】∵,∴,∵x=-1时,y=0,x=3时,y=0,∴该二次函数的对称轴为直线x==1,∵1-3=-2,1+3=4,∴当时的函数值与当时的函数值相等,∵时,,∴时,,∵x>1时,y随x的增大而减小,x<1时,y随x的增大而增大,∴该二次函数的开口向下,∴当时,,即,故选:C.【点睛】本题考查二次函数的性质,正确提取表中信息并熟练掌握二次函数的性质是解题关键.2、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:=1.2,

解得:n=2.

故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.3、B【分析】无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,也就是说它是无限不循环小数.常见的无理数有大部分的平方根、π等.【详解】根据无理数的定义,下列各数:-2,,,,,,0.3010010001…,其中无理数是:,,0.3010010001…故选:B【点睛】考核知识点:无理数.理解无理数的定义是关键.4、C【分析】一次函数y1=kx+b落在与反比例函数y1=图像上方的部分对应的自变量的取值范围即为不等式的解集.【详解】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y1=(c是常数,且c≠0)的图象相交于A(﹣3,﹣1),B(1,m)两点,∴不等式y1>y1的解集是﹣3<x<0或x>1.故答案为C.【点睛】本题考查了一次函数、反比例函数图像与不等式的关系,从函数图像确定不等式的解集是解答本题的关键.5、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1).故选B.6、A【分析】根据直角三角形解决问题即可.【详解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故选:A.【点睛】本题主要考查了解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7、C【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:

图中的两个梯形成中心对称,点P的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.8、A【分析】根据题意,⊙的半径垂直于弦,可应用垂径定理解题,平分弦,平分弦所对的弧、平分弦所对的圆心角,故,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得【详解】⊙的半径垂直于弦,故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.9、C【详解】∵在ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形,故选C.10、D【分析】求出点(-1,0)关于直线的对称点,对称点的坐标即为图象与轴的另一个交点坐标.【详解】由题意得,另一个交点与交点(-1,0)关于直线对称设另一个交点坐标为(x,0)则有解得另一个交点坐标为(3,0)故答案为:D.【点睛】本题考查了二次函数的对称问题,掌握轴对称图象的性质是解题的关键.11、B【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).8450一共4位,从而8450=8.45×2.故选B.考点:科学记数法.12、D【解析】由图象与x轴的交点坐标即可判定下列说法是否正确.【详解】解:∵抛物线与x轴交点的横坐标分别为-1、3,

∴对称轴是直线x==1,方程ax2+bx+c=0的解是x1=-1,x2=3,故A、B正确;

∵当-1<x<3时,抛物线在x轴的下面,

∴y<0,故C正确,

∵抛物线y=ax2+bx+c(a≠0)的开口向上,

∴当x<1,y随x的增大而减小,故D错误;故选:D.【点睛】本题考查抛物线和x轴的交点坐标问题,解题的关键是正确的识别图象.二、填空题(每题4分,共24分)13、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.14、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值.【详解】∵,设方程的两个解为则,∵两实根的平方和为,即=∴解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:3【点睛】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去.15、1【分析】根据题意求出△ABC的周长,根据相似三角形的性质列式计算即可.【详解】解:设△DEF的周长别为x,△ABC的三边长分别为4、5、6,∴△ABC的周长=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.16、.【分析】把代入到一元二次方程中求出的值即可.【详解】解:∵是一元二次方程的一个根,∴,解得:,故答案为:.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值,牢记方程的解满足方程,代入即可是解决此类问题的关键.17、-1【解析】先根据根与系数的关系得到a+b=1,ab=﹣1,再利用通分把+变形为,然后利用整体代入的方法计算.【详解】根据题意得:a+b=1,ab=﹣1,所以+==﹣1.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.18、【分析】根据特殊锐角的三角函数值求解.【详解】解:,故答案为:.【点睛】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.三、解答题(共78分)19、,【分析】根据分式的运算法则进行化简,再把使分式有意义的方程的根代入即可求解.【详解】解:====,∵x2+2x-3=0的两根是-3,1,又∵x不能为1所以把x=﹣3代入,原式=.【点睛】本题考查分式的化简求值、解一元二次方程,注意代入数值时,要选择使分式有意义的数.20、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【详解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.21、(1);(2)【分析】(1)直接根据概率公式计算可得;

(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,

所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,

故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1);理由详见解析;(2);理由详见解析;(3),【分析】(1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(2)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(3)根据圆周角定理,结合(1)(2)的结论首先确定圆心的位置,然后即可得出点P的坐标.【详解】(1)交于点,连接,如图所示:中又∴(2)延长交于点,连接,如图所示:中又∴(3)由(1)(2)结论可知,当OP=2.5时,∠MPN最大,如图所示:∴OM=2.5,MH=1.5∴∴,【点睛】本题考查了圆周角定理、三角形的外角性质的综合应用,熟练掌握,即可解题.23、(1);(2)当时,的取值范围是;(3)点的坐标为.【分析】(1)把点A坐标直接代入可求k值,得出函数解析式,再把自变量-6代入解析式可得出n的值(2)根据k的值可确定函数经过的象限,在一、三象限,在每个象限内随的增大而减小,当x=-1时,y=-3,从而可求出y的取值范围(3)作点A关于y=x的对称点,连接,线段,由,B的坐标求出直线的解析式,最后根据两直线解析式求出点M的坐标.【详解】解:(Ⅰ)把代入得,反比例函数解析式为;把代入得,解得;(2),图象在一、三象限,在每个象限内随的增大而减小,把代入得,当时,的取值范围是;(3)作点关于直线的对称点为,则,连接,交直线于点,此时,,是的最小值,设直线的解析式为,则,解得,直线的解析式为,由,解得,点的坐标为.【点睛】本题是一道关于反比例函数的综合题目,考查的知识点有反比例函数的性质,解二元一次方程组,利用点对称求最短距离等,综合性较强.24、1【分析】原式利用绝对值的代数意义,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】原式=1+21+2=1.【点睛】本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.25、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论