版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省聊城莘县联考数学九年级第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.用配方法将方程变形为,则的值是()A.4 B.5 C.6 D.72.甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚硬币,出现正面朝上的概率B.掷一枚硬币,出现反面朝上的概率C.掷一枚骰子,出现点的概率D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率3.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.4.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.(x-1)2=(x+3)(x-2)+1C.x=x2 D.ax2+bx+c=05.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼()A.条 B.条 C.条 D.条6.下列一元二次方程中有两个不相等的实数根的方程是()A. B.C. D.7.观察下列四个图形,中心对称图形是()A. B. C. D.8.函数在同一直角坐标系内的图象大致是()A. B. C. D.9.下列四张扑克牌图案,属于中心对称图形的是()A. B. C. D.10.方程是关于的一元二次方程,则的值不能是()A.0 B. C. D.11.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是A. B. C. D.12.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.14.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.15.如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是__.16.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.17.分解因式:3a2b+6ab2=____.18.计算:=________.三、解答题(共78分)19.(8分)甲、乙两人进行摸牌游戏现有三张除数字外都相同的牌,正面分别标有数字2,5,1.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为4的倍数,则甲获胜;若抽取的数字和为奇数,则乙获胜这游戏公平吗?请用概率的知识加以解释.20.(8分)如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.21.(8分)如图,放置于平面直角坐标系中,按下面要求画图:(1)画出绕原点逆时针旋转的.(2)求点在旋转过程中的路径长度.22.(10分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.23.(10分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.24.(10分)如图,在平面直角坐标系中,有一个,顶点的坐标分别是.将绕原点顺时针旋转90°得到,请在平面直角坐标系中作出,并写出的顶点坐标.25.(12分)在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.①当恰好落在的延长线上时,如图2,求出点、的坐标.②若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.26.已知,是一元二次方程的两个实数根,且,抛物线的图象经过点,,如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与轴的另一个交点为,抛物线的顶点为,试求出点,的坐标,并判断的形状;(3)点是直线上的一个动点(点不与点和点重合),过点作轴的垂线,交抛物线于点,点在直线上,距离点为个单位长度,设点的横坐标为,的面积为,求出与之间的函数关系式.
参考答案一、选择题(每题4分,共48分)1、B【分析】将方程用配方法变形,即可得出m的值.【详解】解:,配方得:,即,则m=5.故选B.【点睛】本题考查了配方法,解题的关键是利用完全平方公式对方程进行变形.2、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A.掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B.掷一枚硬币,出现反面朝上的概率为,故此选项不符合题意;C.掷一枚骰子,出现点的概率为,故此选项不符合题意;D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率为,故此选项符合题意;故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.3、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合.故选A.4、C【详解】A.x2+=0,是分式方程,故错误;B.(x-1)2=(x+3)(x-2)+1经过整理后为:3x-6=0,是一元一次方程,故错误;C.x=x2,是一元二次方程,故正确;D.当a=0时,ax2+bx+c=0不是一元二次方程,故错误,故选C.5、B【分析】利用样本出现的概率估计整体即可.【详解】设湖里有鱼x条根据题意有解得,经检验,x=800是所列方程的根且符合实际意义,故选B【点睛】本题主要考查用样本估计整体,找到等量关系是解题的关键.6、B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=-16<0,方程没有实数根;D、△=1-4=-3<0,方程没有实数根.故选:B.7、C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.8、C【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.9、B【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.10、C【详解】解:是关于的一元二次方程,则解得m≠故选C.【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.11、C【详解】∵10张卡片的数中能被4整除的数有:4、8,共2个,∴从中任意摸一张,那么恰好能被4整除的概率是故选C12、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得,代入数据可得答案.【详解】如图,在中,米,米,易得,,即,米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.14、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.15、【分析】先根据解析式求出点A、B、C的坐标,求出直线AC的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=-,x2=5,∴直线AC的解析式为,设P(x,),∵过点P作⊙B的切线,切点是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案为:,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.16、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【点睛】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.17、3ab(a+2b)【分析】观察可得此题的公因式为:3ab,提取公因式即可求得答案.【详解】解:3a2b+6ab2=3ab(a+2b)故答案为:3ab(a+2b)18、-1【分析】根据零指数幂及特殊角的三角函数值计算即可.【详解】解:原式=1-4×=-1,故答案为:-1.【点睛】本题考查了实数的运算、零指数幂、特殊角的三角函数值,属于基础题,解答本题的关键是熟练每部分的运算法则.三、解答题(共78分)19、(1)两人抽取相同数字的概率是;(2)这个游戏公平.【分析】(1)根据题意画出树状图得出所有等情况数和两人抽取相同数字的情况数,然后根据概率公式即可得出答案;(2)根据概率公式求出两人抽取的数字和为4的倍数以及和为奇数的概率,然后进行比较即可得出答案.【详解】(1)根据题意画树状图如下:共有9种等情况数,其中两人抽取相同数字的有3种,则两人抽取相同数字的概率是;(2)∵共有9种等情况数,其中两人抽取的数字和为4的倍数有4种,抽取的数字和为奇数的有4种,∴P(和为4的倍数)=,P(和为奇数)=,∴这个游戏公平.【点睛】本题主要考查的是利用概率计算判断游戏公平性,解决本题的关键是要熟练掌握树状图求概率的方法.20、(1)30°;(2)3【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=AC=3,然后利用30°角的正切值求得DE=,然后根据题意求得OD=2DE=2,直径BD=2OD=4,从而使问题得解.【详解】解:连接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等边三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴,即∴DE=∵弦AC垂直平分OD∴OD=2DE=2∴直径BD=2OD=4∴BE=BD-DE=4-=3【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.21、(1)详见解析;(2)【分析】(1)连接OA、OB、OC,利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,顺次连接即可得到△A1B1C1;(2)由旋转角为90°可得∠AOA1=90°,利用勾股定理求出OA的长,利用弧长公式求出的长即可得点A在旋转过程中的路径长度.【详解】(1)如图,连接OA、OB、OC,作OA1⊥OA,OB1⊥OB,OC1⊥OC,使OA1=OA,OB1=OB,OC1=OC,顺次连接A1、B1、C1,△A1B1C1即为所求,(2)∵旋转角为90°,∴∠AOA1=90°,∵,∴点路径长===.【点睛】本题考查了弧长公式及作图-旋转变换:根据旋转的性质可知,对应角相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、纸盒的高为.【分析】设纸盒的高是,根据题意,其底面的长宽分别为(40-2x)和(30-2x),根据长方形面积公式列方程求解即可.【详解】解:设纸盒的高是.依题意,得.整理得.解得,(不合题意,舍去).答:纸盒的高为.【点睛】本题考查一元二次方程的应用,根据题意用含x的式子表示底面的长和宽,正确列方程,解方程是本题的解题关键.23、(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6x≤10时,y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200+1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.24、作图见解析,【分析】连接OA、OB、OC,以O为圆心,分别以OA、OB、OC为半径,顺时针旋转90°,分别得到OA1、OB1、OC1,连接A1B1、A1C1、B1C1即可;然后过点A作AD⊥x轴于D,过点A1作A1E⊥x轴于E,利用AAS证出△OAD≌△A1OE,然后根据全等三角形的性质即可求出点A1的坐标,同理即可求出点B1、C1的坐标.【详解】解:连接OA、OB、OC,以O为圆心,分别以OA、OB、OC为半径,顺时针旋转90°,分别得到OA1、OB1、OC1,连接A1B1、A1C1、B1C1,如下图所示,即为所求;过点A作AD⊥x轴于D,过点A1作A1E⊥x轴于E∵根据旋转的性质可得:OA=A1O,∠AOA1=90°∴∠AOD+∠OAD=90°,∠AOD+∠A1OE=90°∴∠OAD=∠A1OE在△OAD和△A1OE中∴△OAD≌△A1OE∴AD=OE,OD=A1E∵点A的坐标为∴AD=OE=4,OD=A1E=2∴点A1的坐标为(4,2)同理可求点B1的坐标为(1,5),点C1的坐标为(1,1)【点睛】此题考查的是图形与坐标的变化:旋转和全等三角形的判定及性质,掌握旋转图形的画法和构造全等三角形是解决此题的关键.25、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根据正弦的定义即可求解;(2)作MC⊥OB,先求出直线AB解析式,根据等腰三角形的性质及三角函数的定义求出M点坐标,根据MN∥OB,求出N点坐标;(3)由于点C是定点,点P随△ABO旋转时的运动轨迹是以B为圆心,BP长为半径的圆,故根据点和圆的位置关系可知,当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长.又因为BP的长因点D运动而改变,可先求BP长度的范围.由垂线段最短可知,当BP垂直MN时,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值.【详解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育培训项目推广方案
- 2024至2030年中国音视频接头数据监测研究报告
- 2024至2030年中国油性涂料流平剂数据监测研究报告
- 2024至2030年中国可网管光纤收发器行业投资前景及策略咨询研究报告
- 2024至2030年医疗用车项目投资价值分析报告
- 2024年白药酊项目可行性研究报告
- 《开心农场》课程设计方案
- 公司级安全培训试题(基础题)
- 家庭纺织品的枕头及坐垫系列考核试卷
- 搪瓷制品的品牌形象与经营策略考核试卷
- 心理学专业就业前景分析
- 婴幼儿保育技能大赛考试题库(浓缩500题)
- 大学生职业生涯发展展示
- 学校物业服务保洁服务管理方案
- 农场销售部提成激励专项方案
- (多种情景)设备居间合同范本(实用)
- 伟大的数学家华罗庚
- 避免穿着危险的衣物和鞋子
- 心理学基础课件:社会心理
- 殡葬从业人员培训课件
- 办公用品售后服务方案范文
评论
0/150
提交评论