2024届江苏省无锡市宜兴市数学九年级第一学期期末达标检测模拟试题含解析_第1页
2024届江苏省无锡市宜兴市数学九年级第一学期期末达标检测模拟试题含解析_第2页
2024届江苏省无锡市宜兴市数学九年级第一学期期末达标检测模拟试题含解析_第3页
2024届江苏省无锡市宜兴市数学九年级第一学期期末达标检测模拟试题含解析_第4页
2024届江苏省无锡市宜兴市数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市宜兴市数学九年级第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,中,,,,则()A. B. C. D.2.已知关于的一元二次方程的两个根分别是,,且满足,则的值是()A.0 B. C.0或 D.或03.关于的方程是一元二次方程,则的取值范围是()A. B. C. D.4.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中成立的是()A. B. C. D.5.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,1),下列结论:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正确结论的个数是()A.1 B.2 C.3 D.46.下列函数中,是的反比例函数()A. B. C. D.7.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位8.在中,,垂足为D,则下列比值中不等于的是()A. B. C. D.9.反比例函数经过点(1,),则的值为()A.3 B. C. D.10.若关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.11.如图,在同一坐标系中(水平方向是x轴),函数和的图象大致是()A. B. C. D.12.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接.∵与相切于点,∴,∴.∵@是的直径,∴(直径所对的圆周角是90°),∴,∴◎.∵,∴▲(同弧所对的※相等),∴.下列选项中,回答正确的是()A.@代表 B.◎代表 C.▲代表 D.※代表圆心角二、填空题(每题4分,共24分)13.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为______.14.如图,在平面直角坐标系中,点,点.若与关于原点成中心对称,则点的对应点的坐标是___________;和的位置关系和数量关系是____________.15.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.16.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣+2010的值为_____.17.在△ABC中,∠C=90°,若tanA=,则sinB=______.18.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________三、解答题(共78分)19.(8分)已知关于的一元二次方程有两个不相等的实数根,.(1)求的最小整数值;(2)当时,求的值.20.(8分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A,B两点,点A的坐标为(﹣1,3),点B的坐标为(3,n).(1)求这两个函数的表达式;(2)点P在线段AB上,且S△APO:S△BOP=1:3,求点P的坐标.21.(8分)在一不透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.22.(10分)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x元,那么销售量表示为千克,涨价后每千克利润为元(用含x的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?23.(10分)解一元二次方程:.24.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.25.(12分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.26.一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为,如果,那么称这个四位数为“对称数”最小的“对称数”为;四位数与之和为最大的“对称数”,则的值为;一个四位的“对称数”,它的百位数字是千位数字的倍,个位数字与十位数字之和为,且千位数字使得不等式组恰有个整数解,求出所有满足条件的“对称数”的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】由题意根据勾股定理求出BC,进而利用三角函数进行分析即可求值.【详解】解:∵中,,,,∴,∴.故选:B.【点睛】本题主要考查勾股定理和锐角三角函数的定义及运用,注意掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、C【分析】首先根据一元二次方程根与系数关系得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2-2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【详解】解:∵x1、x2是一元二次方程x2-mx+2m-1=0的两个实数根,

∴x1+x2=-(2m+1),x1x2=m-1,

∵x12+x22=(x1+x2)2-2x1x2=3,

∴[-(2m+1)]2-2(m-1)=3,

解得:m1=0,m2=,

又∵方程x2-mx+2m-1=0有两个实数根,

∴△=(2m+1)2-4(m-1)≥0,

∴当m=0时,△=5>0,当m=时,△=6>0

∴m1=0,m2=都符合题意.故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.3、A【解析】根据一元二次方程的定义判断即可.【详解】∵是关于x的一元二次方程,

∴,

故选:A.【点睛】此题主要考查了一元二次方程定义,熟练掌握一元二次方程的定义是解本题的关键.4、B【分析】由题意根据三角函数的定义进行判断,从而判断选项解决问题.【详解】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴,故A选项不成立;,故B选项成立;,故C选项不成立;,故D选项不成立;故选B.【点睛】本题主要考查锐角三角函数的定义,我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.5、A【分析】根据抛物线的图像和表达式分析其系数的值,通过特殊点的坐标判断结论是否正确.【详解】∵函数图象开口向上,∴,又∵顶点为(,1),∴,∴,由抛物线与轴的交点坐标可知:,∴c>1,∴abc>1,故①错误;∵抛物线顶点在轴上,∴,即,又,∴,故②错误;∵顶点为(,1),∴,∵,∴,∵,∴,则,故③错误;由抛物线的对称性可知与时的函数值相等,∴,∴,故④正确.综上,只有④正确,正确个数为1个.故选:A.【点睛】本题考查了二次函数图象与系数的关系,根据二次函数图象以及顶点坐标找出之间的关系是解题的关键.6、A【分析】根据形如(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是因变量,自变量x的取值范围是不等于0的一切实数.分别对各选项进行分析即可.【详解】A.是反比例函数,正确;B.是二次函数,错误;C.是一次函数,错误;D.,y是的反比例函数,错误.故选:A.【点睛】本题考查了反比例函数的定义.反比例函数解析式的一般形式为(k≠0),也可转化为y=kx-1(k≠0)的形式,特别注意不要忽略k≠0这个条件.7、B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.8、D【分析】利用锐角三角函数定义判断即可.【详解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故选:D.【点睛】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数定义是解本题的关键.9、B【解析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.10、B【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,建立关于k的等式,求出k.【详解】解:∵方程有两个相等的实数根,∴△=b2−4ac=62−4×1×k=36−4k=0,解得:k=1.故选:B.【点睛】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.11、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可.【详解】解:由证明过程可知:A:@代表AE,故选项错误;B:由同角的余角相等可知:◎代表,故选项正确;C和D:由同弧所对的圆周角相等可得▲代表∠E,※代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键.二、填空题(每题4分,共24分)13、【分析】由题意设该厂缴税的年平均增长率为x,根据该厂前年及今年的纳税额,即可得出关于x的一元二次方程.【详解】解:如果该厂缴税的年平均增长率为,那么可以用表示今年的缴税数,今年的缴税数为,然后根据题意列出方程.故答案为:.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14、平行且相等【分析】根据关于原点对称的点的坐标特征即可写出对应点坐标,再根据中心对称的性质即可判断对应线段的关系.【详解】如图,∵关于原点对称的两个点,横、纵坐标都互为相反数,且,∴,根据旋转的性质可知,AB=A′B′,∠A=∠A′,∴AB∥A′B′.故答案为:;平行且相等.【点睛】本题考查坐标与图形变化-旋转,明确关于原点对称的点的坐标特征及旋转的性质是解题的关键.15、且k≠1【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠1故答案为﹣≤k<且k≠1.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.16、1【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣=3,∴15m﹣+2010=3(5m﹣)+2010=9+2010=1,故答案为:1.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.17、【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.18、(1,2)【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标.【详解】解:∵点A关于原点的对称点的坐标是(-1,2),∴点A的坐标是(1,-2),∴点A关于x轴的对称点的坐标是(1,2),故答案为:(1,2).【点睛】本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题(共78分)19、(1)1;(2)【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b2-4ac>0,建立关于a的不等式,求出a的取值范围,进而得出a的最小整数值;(2)利用根与系数的关系得出x1+x2和x1x2,进而得出关于a的一元二次方程求出即可.【详解】(1)∵原方程有两个不相等的实数根,,,,∴,且,∴,故的最小整数值为1;(2)由题意:,∵,∴,∴,∴,整理,得:,解之,得:,满足,故的值为:.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.20、(1)反比例函数解析式为y=﹣;一次函数解析式为y=﹣x+2;(2)P点坐标为(0,2).【分析】(1))先把点A点坐标代入y=中求出k2得到反比例函数解析式为y=-;再把B(3,n)代入y=-中求出n得到得B(3,-1),然后利用待定系数法求一次函数解析式;(2)设P(x,-x+2),利用三角形面积公式得到AP:PB=1:3,即PB=3PA,根据两点间的距离公式得到(x-3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x即可得到P点坐标.【详解】(1)把点A(﹣1,3)代入y=得k2=﹣1×3=﹣3,则反比例函数解析式为y=﹣;把B(3,n)代入y=﹣得3n=﹣3,解得n=﹣1,则B(3,﹣1),把A(﹣1,3),B(3,﹣1)代入y=k1x+b得,解得,∴一次函数解析式为y=﹣x+2;(2)设P(x,﹣x+2),∵S△APO:S△BOP=1:3,∴AP:PB=1:3,即PB=3PA,∴(x﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x1=0,x2=﹣3(舍去),∴P点坐标为(0,2).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.21、(1).(2)公平,理由见解析.【分析】(1)利用概率公式直接求出即可;(2)首先利用列表法求出两人的获胜概率,判断双方取胜所包含的情况数目是否相等,即可得出答案.【详解】(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是:.(2)游戏规则对双方公平.列表如下:由表可知,P(小明获胜)=,P(小东获胜)=,∵P(小明获胜)=P(小东获胜),∴游戏规则对双方公平.【点睛】考点:1.游戏公平性;2.列表法与树状图法.22、(1)(500﹣10x);(10+x);(2)销售单价为60元时,进货量为400千克.【分析】(1)根据已知直接得出每千克水产品获利,进而表示出销量,即可得出答案;

(2)利用每千克水产品获利×月销售量=总利润,进而求出答案.【详解】(1)由题意可知:销售量为(500﹣10x)千克,涨价后每千克利润为:50+x﹣40=10+x(千克)故答案是:(500﹣10x);(10+x);(2)由题意可列方程:(10+x)(500﹣10x)=8000,整理,得:x2﹣40x+300=0解得:x1=10,x2=30,因为又要“薄利多销”所以x=30不符合题意,舍去.故销售单价应涨价10元,则销售单价应定为60元;这时应进货=500﹣10×10=400千克.【点睛】本题主要考查了一元二次方程的应用,正确表示出月销量是解题关键.23、,.【分析】根据因式分解法即可求解.【详解】解:∴x-1=0或2x-1=0解得,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.24、(1);(2);(1).【解析】试题分析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(1)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.试题解析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数的函数图象上,∴,解得:,∴反比例函数的解析式为.(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论