版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市江阴市南菁高中学实验学校九年级数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形中,点是以为直径的半圆与对角线的交点.现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为()A. B. C. D.2.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形3.已知关于的一元二次方程有一个根是-2,那么的值是()A.-2 B.-1 C.2 D.104.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为()A. B. C. D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.如图,点,,均在⊙上,当时,的度数是()A. B. C. D.7.如图,将Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得点C′与△ABC的内心重合,已知AC=4,BC=3,则阴影部分的周长为()A.5 B.6 C.7 D.88.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A.65π B.60π C.75π D.70π9.如图,抛物线的开口向上,与轴交点的横坐标分别为和3,则下列说法错误的是()A.对称轴是直线 B.方程的解是,C.当时, D.当,随的增大而增大10.己知的半径为,点是线段的中点,当时,点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定11.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤12.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.二、填空题(每题4分,共24分)13.已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为___cm.14.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°15.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.16.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.17.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.18.如图,两弦AB、CD相交于点E,且AB⊥CD,若∠B=60°,则∠A等于_____度.三、解答题(共78分)19.(8分)如图,已知二次函数y=ax1+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:1.(1)求这个二次函数的表达式;(1)若点M为x轴上一点,求MD+MA的最小值.20.(8分)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y(万件)与销售单价x(元)之间的函数关系如下表格所示:销售单价x(元)…25303540…每月销售量y(万件)…50403020…(1)求每月的利润W(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?21.(8分)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.22.(10分)计算:(1)()(2)-14+23.(10分)如图,在中,点、、分别在边、、上,,,.(1)当时,求的长;(2)设,,那么__________,__________(用向量,表示)24.(10分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.25.(12分)“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?26.计算:|-|-+20200;
参考答案一、选择题(每题4分,共48分)1、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,
∵AB为直径,
∴∠AEB=90°,
而AC为正方形的对角线,
∴AE=BE=CE,
∴弓形AE的面积=弓形BE的面积,
∴阴影部分的面积=△BCE的面积,
∴镖落在阴影部分的概率=.
故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.2、D【分析】根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意;选:D.【点睛】此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.3、C【分析】根据一元二次方程的解的定义,将x=−1代入关于x的一元二次方程,列出关于a的一元一次方程,通过解方程即可求得a的值.【详解】根据题意知,x=−1是关于x的一元二次方程的根,∴(−1)1+3×(−1)+a=0,即−1+a=0,解得,a=1.故选:C.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.4、B【详解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故选B.【点睛】本题考查锐角三角函数的定义.5、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是中心对称图形和轴对称图形的定义.6、A【分析】先利用等腰三角形的性质和三角形内角和计算出的度数,然后根据圆周角定理可得到的度数.【详解】,,,.故选A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、A【分析】由三角形面积公式可求C'E的长,由相似三角形的性质可求解.【详解】解:如图,过点C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延长C'E交A'B'于点F,连接AC',BC',CC',∵点C'与△ABC的内心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,
∴C'E=C'G=C'H,
∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,
∵将Rt△ABC平移到△A'B'C'的位置,
∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3
∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'
∴△C'MN∽△C'A'B',∴C阴影部分=C△C'A'B'×=(5+3+4)×=5.故选A.【点睛】本题考查了三角形的内切圆和内心,相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.8、A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,∴圆锥的母线长为:=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A.【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.9、D【解析】由图象与x轴的交点坐标即可判定下列说法是否正确.【详解】解:∵抛物线与x轴交点的横坐标分别为-1、3,
∴对称轴是直线x==1,方程ax2+bx+c=0的解是x1=-1,x2=3,故A、B正确;
∵当-1<x<3时,抛物线在x轴的下面,
∴y<0,故C正确,
∵抛物线y=ax2+bx+c(a≠0)的开口向上,
∴当x<1,y随x的增大而减小,故D错误;故选:D.【点睛】本题考查抛物线和x轴的交点坐标问题,解题的关键是正确的识别图象.10、C【分析】首先根据题意求出OA,然后和半径比较大小即可.【详解】由已知,得OA=OP=4cm,∵的半径为∴OA<5∴点在内故答案为C.【点睛】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.11、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,
∵∠GEF=∠PGC=90°,
∴∠GEF+∠PGC=180°,
∴BF∥PG
∵BF=PG,
∴四边形BPGF是菱形,
∴BP∥GF,GF=BP=9
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴
∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.12、B【分析】将A、B、C三点坐标分别代入反比例函数的解析式,求出的值比较其大小即可【详解】∵点,,都在反比例函数的图象上,∴分别把x=-3、x=-2、x=1代入得,,∴故选B【点睛】本题考查了反比例函数的图像和性质,熟练掌握相关的知识点是解题的关键.二、填空题(每题4分,共24分)13、【分析】把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割,其比值是【详解】∵P为线段AB的黄金分割点,且PA>PB,AB=2cm,∴故答案为.【点睛】分析题意可知,本题主要考查了黄金分割,弄清楚黄金分割的定义是解答此题的关键;14、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.15、1【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴,解得h=1(m).故答案为1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16、20°【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.17、【解析】如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE=,∴AE=3,设AF=x,则DF=6−x,GF=3+(6−x)=9−x,∴EF=,∴(9−x)²=9+x²,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF==,故答案为:.点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.18、30【解析】首先根据圆周角定理,得∠A=∠BDC,再根据三角形的内角和定理即可求得∠BDC的度数,从而得出结论.【详解】∵AB⊥CD,∴∠DEB=90°,∵∠B=60°∴∠BDC=90°-∠B=90°-60°=30°,∴∠A=∠BDC=30°,故答案为30°.【点睛】综合运用了圆周角定理以及三角形的内角和定理.三、解答题(共78分)19、(1);(1).【分析】(1)先把D点坐标代入y=﹣x+b中求得b,则一次函数解析式为y=﹣x﹣3,于是可确定A(﹣6,0),作EF⊥x轴于F,如图,利用平行线分线段成比例求出OF=4,接着利用一次函数解析式确定E点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),利用勾股定理得到AD=3,再证明Rt△AMH∽Rt△ADO,利用相似比得到MH=AM,加上MD=MD′,MD+MA=MD′+MH,利用两点之间线段最短得到当点M、H、D′共线时,MD+MA的值最小,然后证明Rt△DHD′∽Rt△DOA,利用相似比求出D′H即可.【详解】解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=﹣x﹣3=﹣5,∴E点坐标为(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax1+4ax+c得,解得,∴抛物线解析式为;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,当点M、H、D′共线时,MD+MA=MD′+MH=D′H,此时MD+MA的值最小,∵∠D′DH=∠ADO,∴Rt△DHD′∽Rt△DOA,∴=,即=,解得D′H=,∴MD+MA的最小值为.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.20、(1);(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【分析】(1)先根据表格求出y与x之间的函数关系式,再根据“利润(单价单件成本)销售量”即可得;(2)令代入(1)的结论求出x的值即可得;(3)先根据“制造成本不超过480万元”求出y的取值范围,从而可得x的取值范围,再利用二次函数的性质求解即可得.【详解】(1)由表格可知,y与x之间的函数关系是一次函数,设y与x之间的函数关系式为,将和代入得:,解得,则y与x之间的函数关系式为,因此,,即;(2)由题意得:,整理得:,解得或,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元;(3)由题意得:,则,解得,将二次函数化成顶点式为,由二次函数的性质可知,在范围内,随x的增大而减小,则当时,取得最大值,最大值为(万元),答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.21、依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.【解析】(1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.(2)先根据HL得出△CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=∠COD,再证得DE为⊙O的切线即可【详解】如图所示,依题意画出图形G为⊙O,如图所示(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°在Rt△CDF和Rt△CMF中,∴△CDF≌△CMF(HL),∴DF=MF,∴BC为弦DM的垂直平分线∴BC为⊙O的直径,连接OD∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE为⊙O的切线.∴直线DE与图形G的公共点个数为1个.【点睛】本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.22、(1)-;(2)-.【分析】(1)根据二次根式混合运算法则计算即可;(2)代入特殊角的三角函数值,根据0指数幂、负整数指数幂、二次根式及绝对值的运算法则计算即可.【详解】(1)()=(2-2)-6+6×=22-6+=6-4-6+=-.(2)-14+===-【点睛】本题考查实数的混合运算,熟练掌握运算法则并熟记特殊角的三角函数值是解题关键.23、(1);(2),【分析】(1)利用平行线分线段成比例定理求解即可.
(2)利用三角形法则求解即可.【详解】(1)∵DE∥BC,EF∥AB,
∴四边形DEFB是平行四边形,
∴DE=BF=5,
∵AD:AB=DE:BC=1:3,
∴BC=15,
∴CF=BC-BF=15-5=1.
(2)∵AD:AB=1:3,
∴,
∵EF=BD,EF∥BD,
∴,
∵CF=2DE,
∴,
∴.【点睛】此题考查平面向量,平行向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)5;(2)∥,理由见解析;(3)【分析】(1)求出AE=,证明△ABE∽△DEA,由可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证;(3)由(2)知PQ∥A′D′,取A′D′的中点N,可得出∠PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案.【详解】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京航空航天大学《多轴系统动力学与控制》2021-2022学年期末试卷
- 南京工业大学浦江学院《税法》2023-2024学年第一学期期末试卷
- 方帽子店说课稿
- 《夜书所见》说课稿
- 南京工业大学浦江学院《操作系统》2021-2022学年期末试卷
- 简单的木材合同(2篇)
- 南京工业大学《移动通信与5G技术》2022-2023学年第一学期期末试卷
- 南京工业大学《土木工程图学及BIM》2023-2024学年第一学期期末试卷
- 新型病虫害防治技术的实施方案
- 实验探究加速度与力质量的关系教案
- 初中《学宪法讲宪法》第八个国家宪法日主题教育课件
- 2024医疗机构重大事故隐患判定清单(试行)学习课件
- 《抗心律失常药物临床应用中国专家共识2023》解读
- 四年级家长会(完美版)
- 第一次工地会议内容与议程
- (2021更新)国家开放大学电大《课程与教学论》形考任务4试题及答案
- 单门门禁一体机操作流程
- 肠套叠实用教案
- 胜利油田钻完井液技术现状及发展趋势钻井院
- 静设备安装工程质量验收要求
- 单人临柜操作流程
评论
0/150
提交评论