




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市凤翔中学九年级数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1092.如图所示,不能保证△ACD∽△ABC的条件是()A.AB:BC=AC:CD B.CD:AD=BC:AC C.CD2=ADDC D.AC2=ABAD3.如图,已知的三个顶点均在格点上,则的值为()A. B. C. D.4.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=5.下列方程中,关于x的一元二次方程的是()A.x+=2 B.ax2+bx+c=0C.(x﹣2)(x﹣3)=0 D.2x2+y=16.如图,菱形ABCD与等边△AEF的边长相等,且E、F分别在BC、CD,则∠BAD的度数是()A.80° B.90° C.100° D.120°7.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.28.若关于的一元二次方程有两个实数根则的取值范围是()A. B.且 C.且 D.9.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.10.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.11.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()A.1 B.2 C.1 D.412.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)14.函数y=(m为常数)的图象上有三点(﹣1,y1)、、,则函数值y1、y2、y3的大小关系是_____.(用“<”符号连接)15.关于的方程的一个根是1,则方程的另一个根是____.16.如图,反比例函数的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.17.已知线段,点是线段的黄金分割点(),那么线段______.(结果保留根号)18.方程x2﹣2x+1=0的根是_____.三、解答题(共78分)19.(8分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.20.(8分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.(1)求证:;(2)当时,求的长;(3)设,的面积为,①求关于的函数关系式.②如图2,连接、,若的面积是的面积的1.5倍时,求的值.21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0).(1)△ABC的面积是.(2)请以原点O为位似中心,画出△A'B'C',使它与△ABC的相似比为1:2,变换后点A、B的对应点分别为点A'、B',点B'在第一象限;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为.22.(10分)计算:(1);(2)先化简,再求值.,其中a=2020;23.(10分)如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.24.(10分)数学活动课上老师带领全班学生测量旗杆高度.如图垂直于地面的旗杆顶端A垂下一根绳子.小明同学将绳子拉直钉在地上,绳子末端恰好在点C处且测得旗杆顶端A的仰角为75°;小亮同学接着拿起绳子末端向前至D处,拉直绳子,此时测得绳子末端E距离地面1.5m且与旗杆顶端A的仰角为60°根据两位同学的测量数据,求旗杆AB的高度.(参考数据:sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,结果精确到1米)25.(12分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.26.如图,破残的圆形轮片上,弦的垂直平分线交于点,交弦于点.已知cm,cm.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.2、D【分析】对应边成比例,且对应角相等,是证明三角形相似的一种方法.△ACD和△ABC有个公共的∠A,只需要再证明对应边成比例即满足相似,否则就不是相似.【详解】解:图中有个∠A是公共角,只需要证明对应边成比例即可,△ACD中三条边AC、AD、DC分别对应的△ABC中的AB、AC、BC.A、B、C都满足对应边成比例,只有D选项不符合.故本题答案选择D【点睛】掌握相似三角形的判定是解决本题的关键.3、D【分析】过B点作BD⊥AC于D,求得AB、AC的长,利用面积法求得BD的长,利用勾股定理求得AD的长,利用锐角三角函数即可求得结果.【详解】过B点作BD⊥AC于D,如图,
由勾股定理得,,,∵,即,在中,,,,,∴.故选:D.【点睛】本题考查了解直角三角形以及勾股定理的运用,面积法求高的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.4、D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.5、C【分析】利用一元二次方程的定义判断即可.含有一个未知数,并且未知数的最高次数是2次的整式方程是一元二次方程.【详解】解:A、x+=2不是整式方程,不符合题意;B、ax2+bx+c=0不一定是一元二次方程,不符合题意;C、方程整理得:x2﹣5x+6=0是一元二次方程,符合题意;D、2x2+y=1不是一元二次方程,不符合题意.故选:C.6、C【解析】试题分析:根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故选C.考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质.7、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.8、C【分析】由二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式组,解之即可得出结论.【详解】解:关于的一元二次方程有两个不相等的实数根,,解得:且.故选:C.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△,列出关于的一元一次不等式组是解题的关键.9、A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:.故选A.【点睛】本题考查了随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.11、C【分析】根据垂直平分线的性质可证①;②是错误的;推导出2组角相等可证△ABC∽△FCD,从而判断③;根据△ABC∽△FCD可推导出④.【详解】∵BD=CD,DE⊥BC∴ED是BC的垂直平分线∴EB=EC,△EBC是等腰三角形,①正确∴∠B=∠FCD∵AD=AC∴∠ACB=∠FDC∴△ABC∽△FCD,③正确∴∵AC=6,∴DF=1,④正确②是错误的故选:C【点睛】本题考查等腰三角形的性质和相似的证明求解,解题关键是推导出三角形EBC是等腰三角形.12、B【分析】根据概率公式即可得出答案.【详解】解:∵共设有20道试题,其中文明校园创建标准试题6道,∴他选中文明校园创建标准的概率是,故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(每题4分,共24分)13、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=x2向左平移3个单位后所得直线解析式为:y=(x+3)2;再向下平移2个单位为:.故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14、y2<y1<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为一、三,其中在第三象限的点的纵坐标总小于在第一象限的纵坐标,进而判断在同一象限内的点(﹣1,y1)和(,y2)的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为m2+1>0,∴图象的两个分支在一、三象限;∵第三象限的点的纵坐标总小于在第一象限的纵坐标,点(﹣1,y1)和(,y2)在第三象限,点(,y1)在第一象限,∴y1最小,∵﹣1<,y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在一、三象限;第三象限的点的纵坐标总小于在第一象限的纵坐标;在同一象限内,y随x的增大而减小.15、【分析】根据一元二次方程根与系数的关系求解即可.【详解】设方程的另一个根为x1,∵方程的一个根是1,∴x1·1=1,即x1=1,故答案为:1.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),掌握知识点是解题关键.16、1.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【详解】∵反比例函数的图象经过点D,∴OA•AD=2.
∵D是AB的中点,
∴AB=2AD.
∴矩形的面积=OA•AB=2AD•OA=2×2=1.故答案为1.考点:反比例函数系数k的几何意义.17、【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.18、x1=x2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x﹣1)2=0,解得:x1=x2=1.故答案是:x1=x2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.三、解答题(共78分)19、(1)C(-2,2);(2)证明见解析.【解析】试题分析:(1)Rt△OBP中,由勾股定理得到OP的长,连接AC,因为BC是直径,所以∠BAC=90°,因为OP是△ABC的中位线,所以OA=2,AC=2,即可求解;(2)由点C的坐标可得直线CD的解析式,则可求点D的坐标,从而可用SAS证△DAC≌△POB,进而证∠ACB=90°.试题解析:(1)解:如图,连接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1.∵BC是⊙P的直径,∴∠CAB=90°.∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).(2)证明:∵直线y=2x+b过C点,∴b=6.∴y=2x+6.∵当y=0时,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切线.20、(1)证明见解析;(2);(3)①,②.【分析】(1)由圆内接四边形性质得,又,从而可证明;(2)过作于,证明,得,在直角中求出BH的值即可得到结论;(3)①同(2)可得,根据三角形面积公式求解即可;②过作于,则,用含x的代数式表示出的面积,列出方程求解即可.【详解】(1)∵,∴(2)过作于,∵∴∴∴∴∵在直角中,∴∴(3)①由(2)得AH=1,当时,∴②过作于,则,∵,∴,∴,∴,∴∵∴∴解得,经检验,是方程的解.【点睛】本题考查了圆的综合知识、相似三角形的判定与性质等知识,解题的关键是得到,综合性较强,难度较大.21、(1)12;(2)作图见详解;(3).【分析】(1)先以AB为底,计算三角形的高,利用面积公式即可求出△ABC的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【详解】解:(1)由△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0),可知底AB=6,高为4,所以△ABC的面积为12;(2);(3)根据相似比为1:2,可知P.【点睛】本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.22、(1);(2),1.【分析】(1)把分式方程化为整式方程,即可求解;(2)根据分式的运算法则进行化简,再代入a即可求解.【详解】解:(1)去分母得:解得:检验:当时,∴是原分式方程的解;(2)=当时,原式=1.【点睛】此题主要考查分式方程与分式化简求值,解题的关键是熟知其运算法则.23、(1)见解析;(2)见解析【分析】(1)根据平行线的性质得∠B=∠C,然后由两个角对应相等,即可证明两个三角形相似;(2)由(1)△AFE∽△BFA,得到,即可得到结论成立.【详解】解:证明:(1)∵AB∥CD(已知),∴∠B=∠C(两直线平行内错角相等),又∠EAF=∠C(已知),∴∠B=∠EAF(等量代换),又∠AFE=∠BFA(公共角),∴△AFE∽△BFA(两对对应角相等的两三角形相似)(2)由(1)得到△AFE∽△BFA,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年泉州大车货运资格证考试题
- 环保行业工业废水处理与资源化利用技术研究方案
- 历史文化名城保护法规与实务试题库及答案
- 广西玉林市玉州区2023-2024学年八年级下学期物理期中考试试题(含答案)
- 山东省淄博市张店区部分学校2024-2025学年高二下学期4月阶段性检测政治试题(原卷版+解析版)
- 公司扩大投资合同样本
- 公司购车定金合同样本
- 临时用工解除协议合同样本
- 企业财务评估初级会计师的考察方向试题及答案
- Module5(教学设计)-2024-2025学年外研版(一起)英语四年级下册
- 临床护理实践指南2024版
- 白蚁防治施工方案
- 会计师事务所审计操作手册
- 2024年新人教版四年级数学下册《第6单元第2课时 小数加减法》教学课件
- 国开2024年《数据库运维》形考1-3
- 劳动合同(模版)4篇
- 少儿美术课件国家宝藏系列《鸱吻》
- 盐城射阳农村商业银行招聘真题
- 药物研发监管的国际协调
- 2023年宁夏地区中考满分作文《学习可以收获生活》
- 直播电商策划与运营 课件 项目1 认识直播电商、项目2 主播人设打造与能力塑造
评论
0/150
提交评论