版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省江阴市澄西中学数学九上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定D.一组数据1,5,3,2,3,4,8的众数和中位数都是32.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+53.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点4.如图,将绕点顺时针旋转,得到,且点在上,下列说法错误的是()A.平分 B. C. D.5.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定6.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)7.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.4.25m B.4.45m C.4.60m D.4.75m8.-4的相反数是()A. B. C.4 D.-49.中,,,,则的值是()A. B. C. D.10.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE的面积是()A.6 B.9 C.21 D.25二、填空题(每小题3分,共24分)11.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.12.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.13.关于的方程有一个根,则另一个根________.14.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.15.如图,已知等边的边长为4,,且.连结,并延长交于点,则线段的长度为__________.16.将一元二次方程变形为的形式为__________.17.如图,双曲线与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.18.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)三、解答题(共66分)19.(10分)在平面直角坐标系xoy中,点A(-4,-2),将点A向右平移6个单位长度,得到点B.(1)若抛物线y=-x2+bx+c经过点A,B,求此时抛物线的表达式;(2)在(1)的条件下的抛物线顶点为C,点D是直线BC上一动点(不与B,C重合),是否存在点D,使△ABC和以点A,B,D构成的三角形相似?若存在,请求出此时D的坐标;若不存在,请说明理由;(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标t的取值范围.20.(6分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣121.(6分)齐齐哈尔新玛特商场购进大嘴猴品牌服装每件成本为100元,在试销过程中发现:销售单价元,与每天销售量(件)之间满足如图所示的关系.(1)求出与之间的函数关系式(不用写出自变量的取值范围);(2)写出每天的利润(元)与销售单价之间的函数解析式;并确定将售价定为多少元时,能使每天的利润最大,最大利润是多少?22.(8分)如图,四边形是正方形,连接,将绕点逆时针旋转得,连接,为的中点,连接,.(1)如图1,当时,求证:;(2)如图2,当时,(1)还成立吗?请说明理由.23.(8分)一次知识竞赛中,有甲、乙、丙三名同学名次并列,但奖品只有两份,谁应该得到奖品呢?他们决定用抽签的方式来决定:取张大小、质地相同,分别标有数字的卡片,充分混匀后倒扣在桌子上,按甲、乙、丙的顺序,每人从中任意抽取一张,取后不放回.规定抽到号或号卡片的人得到奖品.求甲、乙两人同时得到奖品的概率.24.(8分)如图,为的直径,、为上两点,且点为的中点,过点作的垂线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)当,时,求的长.25.(10分)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=326.(10分)用适当的方法解下列方程:(1)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;故选:D.【点睛】本题考查统计的相关概念,关键在于熟记概念.2、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.3、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【点睛】本题考查三角形外接圆圆心的确定,属基础题.4、C【分析】由题意根据旋转变换的性质,进行依次分析即可判断.【详解】解:解:∵△ABC绕点A顺时针旋转,旋转角是∠BAC,∴AB的对应边为AD,BC的对应边为DE,∠BAC对应角为∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D选项正确,C选项不正确.故选:C.【点睛】本题考查旋转的性质,旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.5、B【分析】根据根的判别式(),求该方程的判别式,根据结果的正负情况即可得到答案.【详解】解:根据题意得:△=22-4×1×(-1)
=4+4
=8>0,即该方程有两个不相等的实数根,
故选:B.【点睛】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6、D【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答.【详解】解:已知一边长为xcm,则另一边长为(6-x)cm.
则y=x(6-x)化简可得y=-x2+6x,(0<x<6),
故选:D.【点睛】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.7、B【分析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】如图,设BD是BC在地面的影子,树高为x,
根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,
∴BD=0.96,
∴树在地面的实际影子长是0.96+2.6=3.56,
再竹竿的高与其影子的比值和树高与其影子的比值相同得,
∴x=4.45,
∴树高是4.45m.
故选B.【点睛】抓住竹竿的高与其影子的比值和树高与其影子的比值相同是关键.8、C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.9、D【分析】根据勾股定理求出BC的长度,再根据cos函数的定义求解,即可得出答案.【详解】∵AC=,AB=4,∠C=90°∴∴故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.10、C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四边形DBCE=S△ABC-S△ADE=25-4=21,故选C.二、填空题(每小题3分,共24分)11、【解析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,,即展开图是一个半圆,点是展开图弧的中点,,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,,,即蚂蚁爬行的最短距离是.故答案为:.【点睛】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.12、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.13、2【分析】由根与系数的关系,根据两根之和为计算即可.【详解】∵关于的方程有一个根,
∴
解得:;
故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟记根与系数的关系的结构是解题的关键.14、y=2x﹣1【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO+∠BAO=∠BAO+∠CAD,∴∠ABO=∠CAD,在△ACD和△BAO中,∴△ACD≌△BAO(AAS)∴AD=OB=2,CD=OA=4,∴C(6,4)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,∴∴直线AC的解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C的坐标是解题的关键,难度中等.15、1【分析】作CF⊥AB,根据等边三角形的性质求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,设BE为x,再根据对应线段成比例即可求解.【详解】作CF⊥AB,垂足为F,∵△ABC为等边三角形,∴AF=AB=2,∴CF=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,设BE为x,∴,即解得x=1故填:1.【点睛】此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.16、【分析】根据完全平方公式配方即可.【详解】解:故答案为:.【点睛】此题考查的是配方法,掌握完全平方公式是解决此题的关键.17、1.【详解】解:∵⊙O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=1.故答案为:118、54.6【分析】过P点作PD垂直直线b于点D,构造出两个直角三角形,设河两岸之间的距离约为x米,根据所设分别求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【详解】过P点作PD垂直直线b于点D设河两岸之间的距离约为x米,即PD=x,则,可得:解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD垂直直线b于点D,构造出直角三角形.三、解答题(共66分)19、(1)y=-x2-2x+6;(2)存在,D(,);(2)-4≤t<-2或0<t≤1.【分析】(1)根据点A的坐标结合线段AB的长度,可得出点B的坐标,根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(2)由抛物线解析式,求出顶点C的坐标,从而求出直线BC解析式,设D(d,-2d+4),根据已知可知AD=AB=6时,△ABC∽△BAD,从而列出关于d的方程,解方程即可求解;(2)将抛物线的表达式变形为顶点时,依此代入点A,B的坐标求出t的值,再结合图形即可得出:当抛物线与线段AB有且只有一个公共点时t的取值范围.【详解】(1)∵点A的坐标为(-4,-2),将点A向右平移6个单位长度得到点B,∴点B的坐标为(2,-2).∵抛物线y=-x2+bx+c过点,∴,解得∴抛物线表达式为y=-x2-2x+6(2)存在.如图由(1)得,y=-x2-2x+6=-(x+1)2+7,∴C(-1,7)设直线BC解析式为y=kx+b∴解之得,∴lBC:y=-2x+4设D(d,-2d+4),∵在△ABC中AC=BC∴当且仅当AD=AB=6时,两三角形相似即(-4-d)2+(-2+2d-4)2=26时,△ABC∽△BAD,解之得,d1=、d2=2(舍去)∴存在点D,使△ABC和以点A,B,D构成的三角形相似,此时点D(,);(2)如图:抛物线y=-x2+bx+c顶点在直线上∴抛物线顶点坐标为∴抛物线表达式可化为.把代入表达式可得解得.又∵抛物线与线段AB有且只有一个公共点,∴-4≤t<-2.把代入表达式可得.解得,又∵抛物线与线段AB有且只有一个公共点,∴0<t≤1.综上可知的取值范围时-4≤t<-2或0<t≤1.【点睛】本题考查了点的坐标变化、待定系数法求二次函数解析式、二次函数图象上点的坐标特征以及三角形相似,解题的关键是:(1)根据点的变化,找出点B的坐标,根据点A,B的坐标,利用待定系数法求出抛物线的表达式;(2)假设△ABC∽△BAD,列出关于d的方程,(2)代入点A,B的坐标求出t值,利用数形结合找出t的取值范围.20、1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×+3﹣+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21、(1);(2),售价定为140元∕件,每天获得最大利润为1600元【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.【详解】解:解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得:,故y与x的函数关系式为;(2)∵,∴W===,∴当x=140时,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.【点睛】本题考查的是二次函数的应用,根据题意列出关于k、b的关系式是解答此题的关键.22、(1)详见解析;(2)当时,成立,理由详见解析.【分析】(1)由旋转的性质得:,根据直角三角形斜边中线的性质可得OD=CF,OE=CF,进而可得OD=OE;(2)连接CE、DF,根据等腰三角形的性质可得,利用角的和差关系可得,利用SAS可证明△ACE≌△AFD,可得CE=DF,∠ECA=∠DFA,利用角的和差关系可得,利用SAS可证明△EOC≌△DOF,即可证明OD=OE,可得(1)结论成立.【详解】(1)∵四边形ABCD是正方形,AC为对角线,∴∠BAC=45°,∵将绕点逆时针旋转得,=45°,∴点E在AC上,∴,为的中点,∴同理:∴.(2)当时,成立,理由如下:连接,如图所示:∵在正方形中,,AB=AE,∴,∵为的中点,∴,∵,∴,∵=45°,∴,∴,在和中,,∴,∴,∵,∴,∴,在和中,,∴,∴.【点睛】本题考查正方形的性质、旋转的性质及全等三角形的判定与性质,正确得出对应边和对应角,熟练掌握全等三角形的判定定理是解题关键.23、【分析】根据题意画树状图求概率.【详解】解:根据题意,画树状图为:三人抽签共有种结果,且得到每种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024福建福州鼓楼区华大街道办事处招聘专职网格员笔试备考试题及答案解析
- 成都到乌鲁木齐2024年度货物运输时间延误赔偿合同
- 二零二四年度融资租赁合同的具体条款与操作流程
- 二零二四年农机具维修与配件供应合同
- 瓷砖美缝工程2024年度合作框架合同
- 二零二四年度奢侈品品牌管理保密协议
- 成都旅游服务合同(04版)
- 二零二四年度网络推广与搜索引擎优化服务合同
- 二零二四年度渔业养殖区建设爆破作业承包合同
- 国企红色教育合作协议书范本(2篇)
- 能源管理体系内审检查表及能源管理体系内部审核检查表
- 《中国近代史》第一章 国门洞开
- 意向性和と思う课件 高考日语复习
- ArcGIS简介与应用基础
- 西门子g120中文说明书
- 山东省消防安全管理体系
- 放射科专科护理模拟习题(含参考答案)
- 市政污水管网工程监理规划
- 康复工程详解演示文稿
- 五线谱乐谱稿纸
- 银行培训课件:安全防范案例警示教育
评论
0/150
提交评论