版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FourierSeries电子技术系:刘佳liujia1022@ContentFourierSeriesandFourierTransformAnalysisandSynthesisPeriodicPhenomenonandFunctionTrigonometricfunctionFourierSeriesComplexFormoftheFourierSeriesDetailofFourierSeriesFourierSeriesFourierSeriesandFourierTransformFourierFourierSeriesAlmostperiodicphenomenonFourierTransformNon-periodicphenomenon一些概念上是通用的,一些则不通用FourierSeriesAnalysisandSynthesisFourieranalysisTheprocessofdecomposingamusicalinstrumentsoundoranyotherperiodicfunctionintoitsconstituentsineorcosinewavesiscalledFourieranalysisF
(
x
)=
a
/2+
a
1
cos
x
+
b
1
sin
x
+
a
2
cos2
x
+
b
2
sin2
x
+...
+
a
n
cos
nx
+
b
n
sin
nx
+...FouriersynthesisFouriersynthesisworksbycombininga
sinewave
signalandsine-waveorcosine-waveharmonics(signalsatmultiplesofthelowest,orfundamental,frequency)incertainproportions.F
(
x
)=
a
/2+
a
1
cos
x
+
b
1
sin
x
+
a
2
cos2
x
+
b
2
sin2
x
+...
+
a
n
cos
nx
+
b
n
sin
nx
+...LinearOperationFouriersynthesisandanalysisbasedonLinearOperation:Integrationandseries.FourierTransformispartoflinearsystems.FourierSeriesPeriodicPhenomenon&FunctionsPeriodicPhenomenonGenerallyspeakingwethinkaboutperiodicphenomenaaccordingtowhethertheyareperiodicintimeorperiodicinspace.PeriodicPhenomenonintimeTimeForexample,youstandatafixedpointintheoceanwashoveryouwitharegular,recurringpatternofcrestsandtroughs.Theheightofthewaveisaperiodicfunctionoftime.PeriodicPhenomenoninspace
波具有时间周期(T)T(1)
Fixedx=xo,correspondingtotheoscillatingcurve
(振动曲线)
ofmediumelementatpositionxo,i.e.y(t,xo).盯住一点拍电影Wavemotion:Temporalandspatialperiodicitycometogether.periodicityintimeismeasuredbythefrequencyν,withdimension1/sec(2)Fixedt=to,correspondingtothewavepatterncurve
(波形曲线)attimeto.波具有空间周期(
)广镜头拍照片periodicityinspaceismeasuredbythewavelengthλλandv
Thefrequencyandwavelengtharerelatedthroughtheequationv=λνwherevisthespeedofpropagation—thisisnothingbutthewaveversionofspeed=distance/time.Thusthehigherthefrequencytheshorterthewavelength,andthelowerthefrequencythelongerthewavelength.MoreonspatialperiodicityIt’sreasonabletosaythatoneofthepatternsislowfrequencyandthattheothersarehighfrequency,meaningroughlythattherearefewerstripesperunitlengthintheonethanintheothers.TheMathematicFormulationAnyfunctionthatsatisfies whereTisaconstantandiscalledtheperiodofthefunction.Whymathematicscome?周期性是一种物理属性。为什么能用数学描述呢?因为有一种简单的函数能表示周期的性质,利用这种简单的函数,就可以对周期性进行建模。sineandcosineFourierSeriesTrigonometricFunctionHistoryofsineandcosinesine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的领导人物,他于1464年完成的著作《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科。cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现Example:Finditsperiod.Fact:smallestTExample1:Finditsperiod.mustbearationalnumberExample2:Isthisfunctionaperiodicone?notarationalnumberExample3:wouldyousayithadfrequency1Hz?Idon’tthinkso.Ithasoneperiodbutyou’dprobablysaythatithas,orcontainstwofrequencies,onecosineoffrequency1Hzandoneoffrequency2Hz.Periodicofsineandcosine
Question:Howtousesuchsimplefunctionto
buildComplicatedperiodicfunction?Answer:ItAllAddsUpWecancombinethebasicfunctionofperiod1suchassin2πtandcos2πttoformmorecomplicatedperiodicfunctions.Idea1:Oneperiod,manyfrequencies.Thisisimportant!Oneperiod,manyfrequencies.Idea2:
Howcomplicatesignalis?Howgeneralaperiodicphenomenacanthisformulaexpress?Alternativeformula:It’smorecommontowriteageneraltrigonometricsumas:ifweincludeaconstantterm(n=0),asNotes:Theconstanttermwiththefraction1/2isbecauseitsimplifiesthecomputation.InelectricalengineeringtheconstanttermisoftenreferredtoastheDCcomponentsin“directcurrent”.Theotherterms,beingperiodic,“alternate”,asinAC.UsingEuler’sFormulaComplexFormInthisfinalformofthesum,thecoefficientscnarecomplexnumbers,andtheysatisfyThereforethesumisreal:FourierSeriesFourierSeriesIntroductionSupposewehaveacomplicatedlookingperiodicsignalf(t).Decomposeaperiodicinputsignalintoprimitiveperiodiccomponents.Canwe?AperiodicsequenceT2T3Ttf(t)QuestionisSolvingforthesecoefficients.Adirectapproach:Anotherideaisneeded,andthatideaisintegratingbothsidesfrom0to1.Sincetheintegralofthesumisthesumoftheintegrals,andthecoefficientscncomeoutofeachintegral,allofthetermsinthesumintegratetozeroandwehaveaformulaforthek-thcoefficient:Similartothefollowingintegralrelations:ThecnarecalledtheFouriercoefficientsoff(t).Theyalsodenotedby:Thesumiscalleda(finite)Fourierseries.Alsonotethatbecauseofperiodicityoff(t),anyintervaloflength1willdotocalculatef^(n)Question:Whatiftheperiodisn’t1?Homework!Warning!Thatis,givenaperiodicfunctioncanweexpecttowriteitasasumofexponentialsinthewaywehavedescribed?squarewave不能用若干个连续现象来表示一个离散的现象.Afinitesumofcontinuousfunctionsiscontinuousandthesquarewavehasjumpdiscontinuities.Trianglewave不能用有限个可微分函数的和表示表示一个不可微分的函数Howgoodajobdothefinitesumsdoinapproximatingthetrianglewave?IttakeshighfrequenciestomakesharpcornersNotes:Filteringmeanscuttingoff.CuttingoffmeanssharpcornersSharpcornersmeanshighfrequenciesConclusion如果一个函数高阶导数中存在不连续的情况(anydiscontinuityinanyderivative),无论这个函数看起来有多平滑,都不能将函数f(t)表示成有限项的和。Therefore,weshouldthusconsidertheinfiniteFourierseries.Ittakeshighfrequenciestomakesharpcorners.Example:cutoffthesignalintroducehighfrequenciesTheinfiniteFourierseries
Any
non-smoothphenomenonsignalwillgenerateinfinitelymanyFouriercoeffients.TheinfiniteFourierseries
Torepresentthegeneralperiodicphenomenainfiniteseriesmayberequiredandthenconvergence
iscertainlyanissue.TheinfiniteFourierseries
Ifwecutitoffafterafinitenumberofterms,howacurateitwillbe?Iftheseriesisconverging,
wehaveconfidencethatwewillgetagoodapproximation.Convergenceisveryhard!conspiracyofcancellations.oscillation(震荡)Noneedformathematicaldetails.Undersdant:Hardpartstheanswersare.ConvergenceingerneralNeedFundmantalchangeinperspective.Term:orthogonality
meansquareconvergence
L2etc.Weneedunderstandthemeanoftheseterms.Continuescase:f(t)convergeforeachttothevaluef(t).逐点收敛:选择一个时刻t0,将在这个点的级数加起来,即一系列常量的和,则可以保证级数收敛到f(t).Smoothcase:f(x)TheFourierseriesconvergestof(x).Estimatetheerroswillbeuseful.Thisconvergesismorerigorous,wecallit
Uniformconvergence(includepointwise):“Uniformly”meansthattherateatwhichtheseriesconvergesisthesameforallpointsin[0,1].Asequenceoffunctionsfn(t)convergesuniformlytoafunctionf(t)ifthegraphsofthefn(t)getuniformlyclosetothegraphoff(t).MoreDetail:
PointwiseConvergencevs.UniformConvergencePointwiseConvergence:Foreveryvalueoftasn→∞butthegraphsofthefn(t)donotultimatelylooklikethegraphoff(t).DiscontinuityCase:Jump!convergesto[f(t-1)+f(t+1)]/2=1/2GeneralCase:Fouriersaidanyfunctioncanberepresentedbysuchtheinfiniteseries.Wemustlearnnottoasktheconvergenceofataparticularpoint.
Wemustlearntoaskfortheconvergencein
themean(average,energy)sense.NotcompletelygeneralNotalltheperiodicfunctions.Supposef(t)hasPeriod1,andThefunctionthatcomeupmostoftensatisfiedthiscondition.(FiniteEnergy!)
WewantTheintegralofthesquareofthedifferencebetweenafunctionanditsfiniteFourierseriesapproximation:Convergenceinmeansquare:此时:Watchtheequal!等号不意味着:取出一个值t0
这个级数就会收敛到这个函数值f(t0).而是:如果你计算一个有限和的积分,同时让
K趋于无穷,则均方误差会趋近于0.
收敛和等号的概念在这里全变了!这里你要知道是前人花了几个世纪才得到的结果FourierSeriesMoreDetailandtheFinisFundamentalResult周期为1的函数f(t),可以写作:满足的条件是functioninL2([0,1])andtheconvergenceinsquaremeanGeneralinintegralRiemann
integral:对函数在给定区间上的积分给出了一个精确定义。Lebesgue
integral:勒貝格積分是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念MoreNotesonL2[0,1]Innerspace绍线性空间、度量空间、赋范空间、内积空间BanachSpaceHilbertSpaceLesbesgueSpace是一种HilbertSpaceL2Space:所有在几乎处处(almostverywhere)意义下平方可积(square-integrable)的复值的可测函数的集合OrthogonalityInordertocomputecoefficientckforseriesweuse:Thissimplecalculusisthecornerstoneforunderstandingthespaceofsquareintegralfunction.(Geometry!)InnerProductvectorsinRnasn-tuplesofrealnumbers:Thelength,ornormofvisInnerProductIfv=(v1,v2,...,vn)andw=(w1,w2,...,wn)thentheinnerproductisAgeometricapproachtotheinnerproducttheprojectionofvontotheunitvectorw/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球电动汽车高压直流继电器行业调研及趋势分析报告
- 2025年全球及中国IO-Link信号灯行业头部企业市场占有率及排名调研报告
- 2025年全球及中国堆栈式CMOS图像传感器行业头部企业市场占有率及排名调研报告
- 经典居间合同
- 农机作业服务合同
- 环保设施运营管理合同
- 热长期供货合同
- 安全监控系统集成服务合同
- 政府与企业合作协议
- 循环借款合同标准范本
- 迅雷网盘最最最全影视资源-持续更新7.26
- 普通话培训班合作协议书
- 《西方思想经典》课件
- 中医诊疗设备种类目录
- 战略管理与伦理
- 如何构建高效课堂课件
- 徐金桂行政法与行政诉讼法新讲义
- GB/T 13234-2018用能单位节能量计算方法
- (课件)肝性脑病
- 北师大版五年级上册数学教学课件第5课时 人民币兑换
- 工程回访记录单
评论
0/150
提交评论