一元线性回归分析案例课件_第1页
一元线性回归分析案例课件_第2页
一元线性回归分析案例课件_第3页
一元线性回归分析案例课件_第4页
一元线性回归分析案例课件_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.5一元线性回归分析案例课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!1最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!数学3——统计内容画散点图了解最小二乘法的思想求回归直线方程

y=bx+a用回归直线方程解决应用问题2最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习变量之间的两种关系3最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!1020304050500450400350300·······施化肥量x15202530354045水稻产量y330345365405445450455xy施化肥量水稻产量4最新版整理ppt自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、相关关系的定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!5最新版整理ppt

现实生活中存在着大量的相关关系。

如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!6最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?施化肥量x15202530354045水稻产量y330345365405445450455xy散点图施化肥量水稻产量7最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!1020304050500450400350300·······xy施化肥量水稻产量8最新版整理ppt对于一组具有线性相关关系的数据我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:称为样本点的中心。课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!9最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!1、所求直线方程叫做回归直线方程;相应的直线叫做回归直线。2、对两个变量进行的线性分析叫做线性回归分析。1、回归直线方程10最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!2.求回归直线的方法——最小二乘法:称为样本点的中心。11最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!4、求回归直线方程的步骤:(3)代入公式(4)写出直线方程为y=bx+a,即为所求的回归直线方程。^12最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!应用:利用回归直线方程对总体进行线性相关性的检验例1、炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系。如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一列数据,如下表所示:x(0.01%)104180190177147134150191204121y(min)100200210185155135170205235125(1)y与x是否具有线性相关关系;(2)如果具有线性相关关系,求回归直线方程;(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟?13最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!解:(1)列出下表,并计算i12345678910xi104180190177147134150191204121yi100200210185155135170205235125xiyi1040036000399003274522785180902550039155479401512514最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!所以回归直线的方程为=1.267x-30.51(3)当x=160时,1.267.160-30.51=172(2)设所求的回归方程为15最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!5.如何描述两个变量之间线性相关关系的强弱?

在《数学3》中,我们学习了用相关系数r来衡量两个变量之间线性相关关系的方法。相关系数r16最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!小结:回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。

回归分析通过一个变量或一些变量的变化解释另一变量的变化。

其主要内容和步骤是:首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;17最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。18最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.2.回归方程:1.散点图;本例中,r=0.798>0.75.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的。19最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于60.316kg。即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的值。20最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修2-3——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解相关指数R2

和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果21最新版整理ppt1、线性回归模型:y=bx+a+e,(3)其中a和b为模型的未知参数,e称为随机误差。y=bx+a+e,E(e)=0,D(e)=

(4)

2、数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。3、对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为:称为残差平方和,它代表了随机误差的效应。课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!22最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!4、两个指标:(1)类比样本方差估计总体方差的思想,可以用作为的估计量,越小,预报精度越高。(2)我们可以用相关指数R2来刻画回归的效果,其计算公式是:

R21,说明回归方程拟合的越好;R20,说明回归方程拟合的越差。23最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。

在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。5、残差分析与残差图的定义:

然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382

我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。24最新版整理ppt残差图的制作及作用1、坐标纵轴为残差变量,横轴可以有不同的选择;2、若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;3、对于远离横轴的点,要特别注意。身高与体重残差图异常点错误数据模型问题

几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!25最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!例2在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753解:26最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!例2在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753列出残差表为0.994因而,拟合效果较好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.427最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!练习:关于x与y有如下数据:

有如下的两个线性模型:(1);(2)试比较哪一个拟合效果更好。x24568y304060507028最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!6、注意回归模型的适用范围:(1)回归方程只适用于我们所研究的样本的总体。样本数据来自哪个总体的,预报时也仅适用于这个总体。(2)模型的时效性。利用不同时间段的样本数据建立的模型,只有用来对那段时间范围的数据进行预报。(3)建立模型时自变量的取值范围决定了预报时模型的适用范围,通常不能超出太多。(4)在回归模型中,因变量的值不能由自变量的值完全确定。正如前面已经指出的,某个女大学生的身高为172cm,我们不能利用所建立的模型预测她的体重,只能给出身高为172cm的女大学生的平均体重的预测值。29最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!7、一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。30最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!案例2

一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?温度xoC21232527293235产卵数y/个71121246611532531最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!选变量解:选取气温为解释变量x,产卵数为预报变量y。画散点图假设线性回归方程为:ŷ=bx+a选模型分析和预测当x=28时,y=19.87×28-463.73≈93估计参数由计算器得:线性回归方程为y=19.87x-463.73相关指数R2=r2≈0.8642=0.7464所以,二次函数模型中温度解释了74.64%的产卵数变化。探索新知050100150200250300350036912151821242730333639方案1当x=28时,y=19.87×28-463.73≈93一元线性模型32最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!

y=bx2+a变换y=bt+a非线性关系线性关系方案2问题1选用y=bx2+a,还是y=bx2+cx+a?问题3

产卵数气温问题2如何求a、b?合作探究

t=x2二次函数模型33最新版整理ppt方案2解答平方变换:令t=x2,产卵数y和温度x之间二次函数模型y=bx2+a就转化为产卵数y和温度的平方t之间线性回归模型y=bt+a温度21232527293235温度的平方t44152962572984110241225产卵数y/个711212466115325作散点图,并由计算器得:y和t之间的线性回归方程为y=0.367t-202.54,相关指数R2=r2≈0.8962=0.802将t=x2代入线性回归方程得:y=0.367x2-202.54当x=28时,y=0.367×282-202.54≈85,且R2=0.802,所以,二次函数模型中温度解释了80.2%的产卵数变化。t34最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!问题2变换y=bx+a非线性关系线性关系问题1如何选取指数函数的底?产卵数气温指数函数模型方案3合作探究对数35最新版整理ppt课题:选修2-3

8.5回归分析案例再冷的石头,坐上三年也会暖!方案3解答温度xoC21232527293235z=lgy0.851.041.321.381.822.062.51产卵数y/个711212466115325xz当x=28oC时,y≈44,指数回归模型中温度解释了98.5%的产卵数的变化由计算器得:z关于x的线性回归方程为z=0.118x-1.665,相关指数R2=r2≈0.99252=0.985

对数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论