版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市虹口区2023年八上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列实数中,是无理数的是()A.3.14159265 B. C. D.2.下列一次函数中,y随x的增大而增大的是()A.y=-x B.y=1-2x C.y=-x-3 D.y=2x-13.对于任何整数,多项式都能()A.被8整除 B.被整除 C.被整除 D.被整除4.化简的结果是()A. B. C. D.5.以下列各组数据为边长,能构成三角形的是:A.4,4,8 B.2,4,7 C.4,8,8 D.2,2,76.计算:的值是()A.0 B. C. D.或7.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,8.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6 D.(ab)2=ab29.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.310.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. B.5 C.6 D.811.下面命题的逆命题正确的是()A.对顶角相等 B.邻补角互补C.矩形的对角线互相平分 D.等腰三角形两腰相等12.若分式的值为0,则x的值为()A.-3 B.- C. D.3二、填空题(每题4分,共24分)13.某个数的平方根分别是a+3和2a+15,则这个数为________.14.已知、满足方程组,则代数式______.15.如图,中,,,、分别平分、,过点作直线平行于,交、于、,则的周长为______.16.如图,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=________时,形成的Rt△ABP与Rt△PCD全等.17.若函数y=kx+3的图象经过点(3,6),则k=_____.18.有两个正方形,现将放在的内部得图甲,将并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形的边长之和为________.三、解答题(共78分)19.(8分)某单位欲从内部招聘管理人员一名,对甲乙丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试,面试,民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?20.(8分)先化简,再求值:,其中m=9.21.(8分)已知在等边三角形的三边上,分别取点.(1)如图1,若,求证:;(2)如图2,若于点于于,且,求的长;(3)如图3,若,求证:为等边三角形.22.(10分)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A1B1C1.23.(10分)如图,,,为中点(1)若,求的周长和面积.(2)若,求的面积.24.(10分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点驶向终点,在整个行程中,龙舟离开起点的距离(米)与时间(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点与终点之间相距.(2)分别求甲、乙两支龙舟队的与函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?25.(12分)先化简再求值:,其中,.26.解方程(组)(1)2(x-3)-3(x-5)=7(x-1)(2)=1(3)(4)
参考答案一、选择题(每题4分,共48分)1、C【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.1415926是有限小数是有理数,选项错误.B.6,是整数,是有理数,选项错误;C.是无理数,选项正确;D.是分数,是有理数,选项错误.故选C.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数.2、D【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:∵y=kx+b中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A、k=-1<0,y的值随着x值的增大而减小;B、k=-2<0,y的值随着x值的增大而减小;C、k=-1<0,y的值随着x值的增大而减小;D、k=2>0,y的值随着x值的增大而增大;故选D.【点睛】本题考查了一次函数的性质,属于基础题,关键是掌握在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3、A【分析】先对多项式进行因式分解,化为多个最简因式的乘积,再找出其中有无和选项中相同的一个,即可得出答案.【详解】原式故可知中含有因式8、、,说明该多项式可被8、、整除,故A满足,本题答案为A.【点睛】本题关键,若想让多项式被因式整除,需要将多项式化简为多个最简因式的乘积,则多项式一定可以被这几个最简因式整除.4、A【分析】先通分,然后根据分式的加法法则计算即可.【详解】解:===故选A.【点睛】此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.5、C【详解】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;故选C.【点睛】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6、D【解析】试题分析:根据的性质进行化简.原式=,当1a-1≥0时,原式=1a-1+1a-1=4a-1;当1a-1≤0时,原式=1-1a+1-1a=1-4a.综合以上情况可得:原式=1-4a或4a-1.考点:二次根式的性质7、B【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.8、C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.9、D【分析】本题考查二次根式的化简,.【详解】.故选D.【点睛】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.10、A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又,∴,∴PC+PQ的最小值为,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.11、D【分析】先分别写出四个命题的逆命题,然后利用对顶角的定义、邻补角的定义、矩形的判断和等腰三角形的判定方法对各命题的真假进行判断.【详解】解:A.对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;B.邻补角互补的逆命题为互补的角为邻补角,此逆命题为假命题;C.矩形的对角线互相平分的逆命题为对角线互相平分的四边形为矩形,此逆命题为假命题;D.等腰三角形两腰相等的逆命题为两边相等的三角形为等腰三角形,此逆命题为真命题.故答案为D.【点睛】本题考查了命题与定理,掌握举出反例法是判断命题的真假的重要方法.12、D【分析】根据分式值为的条件进行列式,再解方程和不等式即可得解.【详解】解:∵分式的值为∴∴.故选:D【点睛】本题考查了分式值为的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键.二、填空题(每题4分,共24分)13、1【解析】∵某个数的平方根分别是a+3和2a+15,∴a+3+2a+15=0,∴a=-6,∴(a+3)2=(-6+3)2=1,故答案为:1.14、-1【分析】先利用加减消元法解方程,,把①+②得到3x=6,解得x=2,然后把x=2代入①可求出y,最后把x、y的值都代入x-y中进行计算即可;【详解】解:,把①+②得:3x=6,解得x=2,把x=2代入①得2+y=5,解得y=3,∴方程组的解为,∴;故答案为:-1;【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.15、1【分析】根据分别平分,EFBC,得∠EBD=∠EDB,从而得ED=EB,同理:得FD=FC,进而可以得到答案.【详解】∵分别平分,∴∠EBD=∠CBD,∵EFBC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴ED=EB,同理:FD=FC,∴的周长=AE+AF+EF=AE+AF+ED+FD=AE+AF+EB+FC=AB+AC=6+7=1.故答案是:1.【点睛】本题主要考查角平分线和平行线的性质定理,掌握“双平等腰”模型,是解题的关键.16、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】当BP=1时,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=1,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角.17、1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.18、1【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b=1,故答案为:1.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.三、解答题(共78分)19、(1)甲:50分;乙:80分;丙:70分;(2)丙【分析】(1)根据扇形统计图即可求出三人的得分;(2)利用加权平均数列式计算求出三人的得分,然后判断录用的候选人即可.【详解】解:(1)由题意得,民主测评:甲:200×25%=50分,乙:200×40%=80分,丙:200×35%=70分;(2)∵,则,分分分∵77.4>77>72.9,
∴丙将被录用.【点睛】本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.20、【解析】试题分析:原式可以化为,当时,原式考点:完全平方公式、平方差公式的计算点评:本题考查的是完全平方公式、平方差公式的简单运算规律21、(1)证明见解析;(2)5;(3)证明见解析.【分析】(1)根据等边三角形的性质得出,,,进一步证得,即可证得;(2)根据等边三角形性质和30°的直角三角形性质,得出线段长之间关系,列出方程即可解答;(3)延长BD到M,使BM=AD,连接ME,延长EC到N,使CN=BE,连接FN,可得,再证,从而得出,再由三角形外角性质即可证得结论.【详解】证明:(1)如图1中,是等边三角形,,,,,在和中,∴,(2)如图2中,是等边三角形,,,,,∴,同理可得:,,∵,即:∴解得:(3)如图3,延长BD到M,使BM=AD,连接ME,延长EC到N,使CN=BE,连接FN,∵AD=CF,∴BM=CF,是等边三角形,,,,在和中,,,∴,,又∵,,∴在和中,,,∴,又∵,,∴;又∵∴为等边三角形.【点睛】此题考查了等边三角形性质,含30度角的直角三角形性质,全等三角形的性质和判定的应用,主要锻炼学生的推理能力,解(3)的关键通过作辅助线构造三角形全等证明角和线段的关系.22、见解析.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形△A1B1C1,将△A1B1C1中的各点A1、B1、C1旋转180°后,得到相应的对应点A1、B1、C1,连接各对应点即得△A1B1C1.【详解】解:如图所示:23、(1)周长为,面积为;(2)【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=DE=AB,即可求出周长,作底边CD上的高EH,利用勾股定理求出高,即可求面积;(2)设∠ECB=∠EBC=,则,利用∠DEA=2∠DBE可推出∠CED=30°,作CE边上的高DM,利用30°所对的直角边是斜边的一半可求出高,再根据三角形面积公式求解.【详解】(1)∵,,为中点∴CE=DE=AB=3∴△CDE的周长=CE+DE+CD=3+3+2=8如图,作EH⊥CD∵CE=DE∴CH=CD=1∴S△CDE=(2)∵CE=DE=AB,E为AB中点∴CE=BE,DE=BE,∴∠ECB=∠EBC,∠EBD=∠EDB设∠ECB=∠EBC=,则∠CEA=2∠EBC=,∴∠DEA=2∠EBD=∴∠CED=∠DEA-∠CEA=如图,过D点作DM⊥CE于点M,由(1)可知在Rt△DEM中,DE=3,∴DM=DE=∴【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形的性质,以及勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半与等腰三角形三线合一的性质,是解题的关键.24、(1)3000;(2)甲龙舟队的与函数关系式为,乙龙舟队的与函数关系式为;(3)甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.【分析】(1)直接根据图象即可得出答案;(2)分别用待定系数法即可求出甲、乙两支龙舟队的y与x函数关系式;(3)先求出两支龙舟队相遇的时间,然后结合图像分四种情况进行讨论,相遇前两次,相遇后两次,分别进行计算即可.【详解】(1)根据图象可知,起点与终点之间相距3000m(2)设甲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《TPS丰田生产方式》课件
- 决定销售业绩的重要心态(课件)
- LNG气化站应急备用气源自用建设项目可行性研究报告模板-立项备案
- 一年级语文上册拼音aoe
- 2024年江苏省招聘社区工作者题库及参考答案
- 单位管理制度收录大合集【人员管理篇】十篇
- 单位管理制度品读选集【职员管理】十篇
- 楼梯 栏杆 栏板(一)22J403-1
- 果冻袋行业行业发展趋势及投资战略研究分析报告
- 中国返利网站行业市场调研分析及投资战略咨询报告
- 低温雨雪冰冻灾害应急救援准备
- 幼儿园背景研究分析报告
- 围墙维修 施工方案
- 创伤关节骨科年度总结
- 2022-2023学年江苏省盐城第一学期高一期末考试数学试卷及答案解析-普通用卷
- 医师病理知识定期考核试题与答案
- 矿井提升容器课件
- 医用冰箱温度登记表
- 《洁净工程项目定额》(征求意见稿)
- 城镇燃气设计规范
- 年零售药店操作规程版
评论
0/150
提交评论