陕西省宝鸡市高新区2023年数学九上期末质量检测模拟试题含解析_第1页
陕西省宝鸡市高新区2023年数学九上期末质量检测模拟试题含解析_第2页
陕西省宝鸡市高新区2023年数学九上期末质量检测模拟试题含解析_第3页
陕西省宝鸡市高新区2023年数学九上期末质量检测模拟试题含解析_第4页
陕西省宝鸡市高新区2023年数学九上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省宝鸡市高新区2023年数学九上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.702.若一元二次方程的一个根为,则其另一根是()A.0 B.1 C. D.23.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.24.如图,CD⊥x轴,垂足为D,CO,CD分别交双曲线y=于点A,B,若OA=AC,△OCB的面积为6,则k的值为()A.2 B.4 C.6 D.85.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是(

)A. B. C. D.6.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣57.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有()个A. B. C. D.8.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:49.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称10.用配方法解一元二次方程x2+8x-9=0,下列配方法正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知关于x的方程的一个根是1,则k的值为__________.12.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为▲cm.13.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.14.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)15.已知△ABC∽△A'B'C',S△ABC:S△A'B'C'=1:4,若AB=2,则A'B'的长为_____.16.若双曲线的图象在第二、四象限内,则的取值范围是________.17.一元二次方程的根的判别式的值为____.18.已知关于的方程的一个解为,则m=_______.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.(1)求∠ABE的大小及的长度;(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为,求BG的长.20.(6分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数的图象经过点P,求m的值.21.(6分)已知和是关于的一元二次方程的两个不同的实数根.(1)求的取值范围;(2)如果且为整数,求的值.22.(8分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.(3)在(2)的条件下求出点B经过的路径长(结果保留π).23.(8分)如图,已知正方形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.(1)如图1,直按写出的值;(2)将△EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE的数量关系,并证明你的结论;(3)如图3,当BE=BA时,其他条件不变,△EBF绕点B顺时针旋转,设旋转角为α(0°<α<360°),当α为何值时,EA=ED?在图3或备用图中画出图形,并直接写出此时α=.24.(8分)在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点的倍相关圆.例如,在如图1中,点的1倍相关圆为以点为圆心,2为半径的圆.(1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.(2)如图2,若是轴正半轴上的动点,点在第一象限内,且满足,判断直线与点的倍相关圆的位置关系,并证明.(3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.①若点在直线上,则点的3倍相关圆的半径为________.②点在直线上,点的倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.25.(10分)一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3.小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球,记下标号.若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;(2)请判断这个游戏是否公平,并说明理由.26.(10分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:,,,,,)

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、C【分析】把代入方程求出的值,再解方程即可.【详解】∵一元二次方程的一个根为∴解得∴原方程为解得故选C【点睛】本题考查一元二次方程的解,把方程的解代入方程即可求出参数的值.3、A【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.4、B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为k,即可得到S△ODC=•2m•2n=2mn=2k,即可得到6+k=2k,解得k=1.【详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=上,∴k=mn,∴S△ODC=×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为k,∴6+k=2k,解得k=1,故选:B.【点睛】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.5、A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.6、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.7、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案.【详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.8、C【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.9、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.10、C【分析】根据完全平方公式配方即可.【详解】解:x2+8x-9=0x2+8x=9x2+8x+16=9+16故选C.【点睛】此题考查的是用配方法解一元二次方程,掌握完全平方公式是解决此题的关键.二、填空题(每小题3分,共24分)11、-1【分析】根据一元二次方程的定义,把x=1代入方程得关于的方程,然后解关于的方程即可.【详解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、.【解析】如图,连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=1.设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=12,解得r=(cm).13、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.14、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=x2向左平移3个单位后所得直线解析式为:y=(x+3)2;再向下平移2个单位为:.故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15、1【分析】由相似三角形的面积比得到相似比,再根据AB即可求得A'B'的长.【详解】解:∵△ABC∽△A'B'C',且S△ABC:S△A'B''C'=1:1,∴AB:A′B′=1:2,∵AB=2,∴A′B′=1.故答案为1.【点睛】此题考查相似三角形的性质,相似三角形的面积的比等于相似比的平方.16、m<8【分析】对于反比例函数:当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限.【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.17、1.【解析】直接利用根的判别式△=b2-4ac求出答案.【详解】一元二次方程x2+3x=0根的判别式的值是:△=32-4×1×0=1.故答案为1.【点睛】此题主要考查了根的判别式,正确记忆公式是解题关键.18、0【分析】把代入原方程得到关于的一元一次方程,解方程即可得到答案.【详解】解:把代入原方程得:故答案为:【点睛】本题考查的是一元二次方程的解的含义,掌握方程的解的含义是解题的关键.三、解答题(共66分)19、(1)15°,;(2)1.【解析】试题分析:(1)连接AE,如图1,根据圆的切线的性质可得AE⊥BC,解Rt△AEB可求出∠ABE,进而得到∠DAB,然后运用圆弧长公式就可求出的长度;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==AB,根据等腰三角形的性质可得BE=EG,只需运用勾股定理求出BE,就可求出BG的长.试题解析:(1)连接AE,如图1,∵AD为半径的圆与BC相切于点E,∴AE⊥BC,AE=AD=2.在Rt△AEB中,sin∠ABE===,∴∠ABE=15°.∵AD∥BC,∴∠DAB+∠ABE=180°,∴∠DAB=135°,∴的长度为=;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==,∴AG=AB.∵AE⊥BG,∴BE=EG.∵BE===2,∴EG=2,∴BG=1.考点:切线的性质;弧长的计算;动点型;最值问题.20、(1);(2).【分析】(1)已知A(2,0)an∠OAB==,可求得OB=1,所以B(0,1),设直线l的表达式为,用待定系数法即可求得直线l的表达式;(2)根据直线l上的点P位于y轴左侧,且到y轴的距离为1可得点P的横坐标为-1,代入一次函数的解析式求得点P的纵坐标,把点P的坐标代入反比例函数中,即可求得m的值.【详解】解:(1)∵A(2,0),∴OA=2∵tan∠OAB==∴OB=1∴B(0,1)设直线l的表达式为,则∴∴直线l的表达式为(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为-1又∵点P在直线l上,∴点P的纵坐标为:∴点P的坐标是∵反比例函数的图象经过点P,∴∴【点睛】本题考查待定系数法求函数的解析式;一次函数与反比例函数的交点坐标.21、(1);(2)-2【分析】(1)根据一元二次方程根有两个不同的实数根可得判别式△>0,解不等式求出k的取值范围即可;(2)根据一元二次方程根与系数的故选可得,,根据列不等式,结合(1)的结论可求出k的取值范围,根据k为整数求出k值即可.【详解】(1)∵方程有两个不同的实数根,∴△,解得:.∴的取值范围是.(2)∵和是关于的一元二次方程的两个不同的实数根,∴,,∵,∴,解得.又由(1),∴,∵k为整数,∴k的值为.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1和x2,那么x1+x2=,x1·x2=;判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的判别式及韦达定理是解题关键.22、(1)见解析,A1(3,﹣3);(2)见解析;(3)【分析】(1)延长BC到B1,使B1C=2BC,延长AC到A1,使A1C=2AC,再顺次连接即可得△A1B1C,再写出A1坐标即可;(2)分别作出A,B绕C点顺时针旋转90°后的对应点A2,B2,再顺次连接即可得△A2B2C.(3)点B的运动路径为以C为圆心,圆心角为90°的弧长,利用弧长公式即可求解.【详解】解:(1)如图,△A1B1C为所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C为所作;(3)CB=,所以点B经过的路径长=π.【点睛】本题考查网格作图与弧长计算,熟练掌握位似与旋转作图,以及弧长公式是解题的关键.23、(1);(2)DF=AE,理由见解析;(3)作图见解析,30°或150°【分析】(1)直接利用等腰直角三角形的性质计算即可得出结论;(2)先判断出,进而得出△ABE∽△DBF,即可得出结论;(3)先判断出点E在AD的中垂线上,再判断出△BCE是等边三角形,求出∠CBE=60°,再分两种情况计算即可得出结论.【详解】(1)∵BD是正方形ABCD的对角线,∴∠ABD=45,BD=AB,∵EF⊥AB,∴∠BEF=90,∴∠BFE=∠ABD=45,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴,故答案为:;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∠BFE=∠ABD=45,∴,由旋转知,∠ABE=∠DBF,∴△ABE∽△DBF,∴,∴DF=AE;(3)如图3,连接DE,CE,∵EA=ED,∴点E在AD的中垂线上,∴AE=DE,BE=CE,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90,AB=BC,∴BE=CE=BC,∴△BCE是等边三角形,∴∠CBE=60,∴∠ABE=∠ABC-∠CBE=90-60=30,即:α=30,如图4,同理,△BCE是等边三角形,∴∠ABE=∠ABC+∠CBE=90+60=150,即:α=150,故答案为:30或150.【点睛】本题属于相似形的综合题,主要考查了旋转的性质、正方形的性质、相似三角形的判定和性质以及勾股定理的综合运用,解决问题的关键是利用相似比表示线段之间的关系.24、(1)解:,3(2)解:直线与点的倍相关圆的位置关系是相切.(3)①点的3倍相关圆的半径是3;②的最大值是.【分析】(1)根据点的倍相关圆的定义即可判断出答案;(2)设点的坐标为,求得点的倍相关圆半径为,再比较与点到直线直线的距离即可判断;(3)①先求得直线的解析式,【详解】(1)的1倍相关圆,半径为:,的1倍相关圆,半径为:,不符合,故答案为:,3;(2)解:直线与点的倍相关圆的位置关系是相切,证明:设点的坐标为,过点作于点,∴点的倍相关圆半径为,∴,∵,∴,∴点的倍相关圆半径为,∴直线与点的倍相关圆相切,(3)①∵反比例函数的图象经过点,∴,∴点B的坐标为:,∵直线经过点和,设直线的解析式为,把代入得:,∴直线的解析式为:,∵直线与直线关于轴对称,∴直线的解析式为:,∵点在直线上,设点C的坐标为:,∴点的3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论