山西省临汾市忻州师范院附属外国语中学2024届数学八上期末复习检测模拟试题含解析_第1页
山西省临汾市忻州师范院附属外国语中学2024届数学八上期末复习检测模拟试题含解析_第2页
山西省临汾市忻州师范院附属外国语中学2024届数学八上期末复习检测模拟试题含解析_第3页
山西省临汾市忻州师范院附属外国语中学2024届数学八上期末复习检测模拟试题含解析_第4页
山西省临汾市忻州师范院附属外国语中学2024届数学八上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市忻州师范院附属外国语中学2024届数学八上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,,高BE和CH的交点为O,则∠BOC=()A.80° B.120° C.100° D.150°2.为你点赞,你是最棒的!下列四种表情图片都可以用来为你点赞!其中是轴对称图形的是()A. B. C. D.3.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同4.若,则下列式子正确的是()A. B. C. D.5.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72° B.45° C.36° D.30°6.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1 B.2 C.3 D.47.下列变形正确的是()A. B. C. D.8.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°9.如图,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED;②AC+BE=AB;③DA平分∠CDE;④∠BDE=∠BAC;⑤=AB:AC,其中结论正确的个数有()A.5个 B.4个C.3个 D.2个10.下列计算结果,正确的是()A. B.C. D.11.下列根式中,属于最简二次根式的是().A. B. C. D.12.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°二、填空题(每题4分,共24分)13.如图,在中,,点在边上,且则__________.14.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.15.如图,点A的坐标(-2,3)点B的坐标是(3,-2),则图中点C的坐标是______.16.函数的自变量的取值范围是.17.观察探索:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1根据规律填空:(x﹣1)(xn+xn﹣1+…+x+1)=__.(n为正整数)18.人体内某种细胞可近似地看作球体,它的直径为0.000000156m,将0.000000156用科学记数法表示为.三、解答题(共78分)19.(8分)列方程解应用题:亮亮服装店销售一种服装,若按原价销售,则每月销售额为10000元;若按八五折销售,则每月多卖出20件,且月销售额还增加1900元.(1)求每件服装的原价是多少元?(2)若这种服装的进价每件150元,求按八五折销售的总利润是多少元?20.(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人滋养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了.部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次共调查的学生人数是人,(2)所调查学生读书本数的众数是___本,中位数是__本(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?21.(8分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.22.(10分)龙人文教用品商店欲购进、两种笔记本,用160元购进的种笔记本与用240元购进的种笔记本数量相同,每本种笔记本的进价比每本种笔记本的进价贵10元.(1)求、两种笔记本每本的进价分别为多少元?(2)若该商店准备购进、两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进种笔记本多少本?23.(10分)小明和小津去某风景区游览.小明从明桥出发沿景区公路骑自行车去陶公亭,同一时刻小津在霞山乘电动汽车出发沿同一公路去陶公亭,车速为.他们出发后时,离霞山的路程为,为的函数图象如图所示.(1)求直线和直线的函数表达式;(2)回答下列问题,并说明理由:①当小津追上小明时,他们是否已过了夏池?②当小津到达陶公亭时,小明离陶公亭还有多少千米?24.(10分)计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式的值;(4)先化简,再求值:(m+2),其中m=.25.(12分)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……请回答下列问题:(1)按以上规律,用含n的式子表示第n个等式:==(n为正整数)(2)求的值.26.已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.

参考答案一、选择题(每题4分,共48分)1、C【分析】在中根据三角形内角和定理求出,然后再次利用三角形内角和定理求出,问题得解.【详解】∵BE和CH为的高,∴.∵,∴在中,,在中,,∴故选C.【点睛】本题考查三角形内角和定理,熟知三角形内角和为180°是解题关键.2、A【分析】根据轴对称图形的定义逐项识别即可,在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形.据此解答即可.【详解】A是轴对称图形,其余的不是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.3、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.4、B【分析】根据不等式的性质判断即可.【详解】解:由,不能判断与的大小,A错误;由,可知,B正确;由,可知,∴,C错误;由,可知,D错误.故选:B.【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.5、C【解析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C考点:三角形的内角和6、C【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.【详解】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),∴筷子露在杯子外面的长度至少为13﹣10=3cm,故选C.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.7、D【分析】根据分式的基本性质,等式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质和等式的基本性质,解题的关键是熟练掌握分式的基本性质进行解题.8、A【解析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.9、A【分析】由在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E.可得CD=DE,继而可得∠ADC=∠ADE,又由角平分线的性质,证得AE=AD,由等角的余角相等,可证得∠BDE=∠BAC,由三角形的面积公式,可证得S△ABD:S△ACD=AB:AC.【详解】解:∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,

∴CD=ED,

故①正确;

∴∠CDE=90°−∠BAD,∠ADC=90°−∠CAD,

∴∠ADE=∠ADC,

即AD平分∠CDE,

故④正确;

∴AE=AC,

∴AB=AE+BE=AC+BE,

故②正确;

∵∠BDE+∠B=90°,∠B+∠BAC=90°,

∴∠BDE=∠BAC,

故③正确;

∵S△ABD=AB•DE,S△ACD=AC•CD,

∵CD=ED,

∴S△ABD:S△ACD=AB:AC,

故⑤正确.综上所述,结论正确的是①②③④⑤共5个

故答案为A.【点睛】本题考查了角平分线的性质.难度适中,注意掌握数形结合思想的应用.10、C【分析】结合二次根式混合运算的运算法则进行求解即可.【详解】A.,故本选项计算错误;B.,故本选项计算错误;C.,故此选项正确;D.,故此选项计算错误故选:C.【点睛】本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式混合运算的运算法则.11、D【分析】根据最简二次根式的定义:①被开方数不含有分母,②被开方数不含有能开得尽方的因数或因式,逐个判断即可.【详解】A、,不是最简二次根式,故本选项不符合题意;B、,不是最简二次根式,故本选项不符合题意;C、,不是最简二次根式,故本选项不符合题意;D、,是最简二次根式,故本选项符合题意;故选:D【点睛】本题考查了最简二次根式,熟记最简二次根式的定义是解此题的关键.12、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,

∴∠1=∠2,∠3=∠4,

∵∠ACE=∠A+∠ABC,

即∠1+∠2=∠3+∠4+∠A,

∴2∠1=2∠3+∠A,

∵∠1=∠3+∠D,

∴∠D=∠A=×30°=15°.

故选A.

【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.二、填空题(每题4分,共24分)13、36°【分析】设∠A=,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【详解】设∠A=.

∵AD=CD,

∴∠ACD=∠A=;

∵CD=BC,

∴∠CBD=∠CDB=∠ACD+∠A=2;

∵AC=AB,

∴∠ACB=∠CBD=2,∵∠A+∠ACB+∠CBD=180°,

∴+2+2=180°,

∴=36°,

∴∠A=36°.故答案为:36°.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.14、x>﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集.【详解】解:由题意及图象得:不等式3x+b>ax﹣3的解集为x>﹣2,故答案为:x>﹣2【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.15、(1,2)【分析】根据平面直角坐标系的特点建立坐标系,即可确定C点的坐标.【详解】解:∵点A的坐标(-2,3)点B的坐标是(3,-2),故平面直角坐标系如图所示:故答案为:(1,2).【点睛】本题主要考查了坐标与图形,解题的关键是根据两个已知点,确定直角坐标系.16、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠117、xn+1﹣1.【分析】观察算式,得到规律,直接利用规律填空即可.【详解】根据规律填空:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1.故答案为:xn+1﹣1.【点睛】本题考查平方差公式、多项式乘多项式、规律问题等知识,解题的关键是学会或转化的思想思考问题,学会从特殊到一般的探究规律的方法.18、【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.000000156第一个有效数字前有7个0(含小数点前的1个0),从而.三、解答题(共78分)19、(1)200元;(2)1400元【分析】(1)设每件服装的原价为x元,根据“按八五折销售,则每月多卖出20件”,列出分式方程解答即可;(2)根据“总利润=单件利润×销售数量”列出算式计算即可.【详解】(1)设每件服装的原价为x元,根据题意得:解得:经检验是原方程的解.答:每件服装的原价为200元.(2)(200×85%-150)×()=(170-150)×(50+20)=1400(元)答:按八五折销售的总利润是1400元.【点睛】本题考查了分式方程的应用,解题的关键是找出等量关系,列出方程,并熟知总利润=单件利润×销售数量.20、(1)20;(2)4,4;(3)估计该校学生这学期读书总数约是3600本.【分析】(1)将条形图中的数据相加即可;(2)根据众数和中位数的概念解答即可;(3)先求出加权平均数,再利用样本估计总体即可.【详解】解:(1)1+1+3+6+4+2+2+1=20,∴这次共调查的学生人数是20人,故答案为:20;(2)读书4本的人数最多,故众数是4;按读书本数从小到大的顺序排列后,第10、11的平均数为:,故中位数是4,故答案为:4;4;(3)每人读书本数的平均数=(1+2×1+3×3+4×6+5×4+6×2+7×2+8)÷20=4.5,∴总数是:800×4.5=3600,答:估计该校学生这学期读书总数约是3600本.【点睛】本题考查条形统计图、中位数、众数、加权平均数以及用样本估计总体,解题的关键是能够从统计图中获取有用信息.21、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;

(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;

(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;

②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=2.【详解】(2)∵a2−4a+4+=2,

∴(a−2)2+=2,

∵(a-2)2≥2,≥2,

∴a-2=2,2b+2=2,

∴a=2,b=-2;

(2)由(2)知a=2,b=-2,

∴A(2,2),B(-2,2),

∴OA=2,OB=2,

∵△ABC是直角三角形,且∠ACB=45°,

∴只有∠BAC=92°或∠ABC=92°,

Ⅰ、当∠BAC=92°时,如图2,

∵∠ACB=∠ABC=45°,

∴AB=CB,

过点C作CG⊥OA于G,

∴∠CAG+∠ACG=92°,

∵∠BAO+∠CAG=92°,

∴∠BAO=∠ACG,

在△AOB和△BCP中,

∴△AOB≌△CGA(AAS),

∴CG=OA=2,AG=OB=2,

∴OG=OA-AG=2,

∴C(2,2),

Ⅱ、当∠ABC=92°时,如图2,

同Ⅰ的方法得,C(2,-2);

即:满足条件的点C(2,2)或(2,-2)

(3)①如图3,由(2)知点C(2,-2),

过点C作CL⊥y轴于点L,则CL=2=BO,

在△BOE和△CLE中,

∴△BOE≌△CLE(AAS),

∴BE=CE,

∵∠ABC=92°,

∴∠BAO+∠BEA=92°,

∵∠BOE=92°,

∴∠CBF+∠BEA=92°,

∴∠BAE=∠CBF,

在△ABE和△BCF中,

∴△ABE≌△BCF(ASA),

∴BE=CF,

∴CF=BC;

②点C到DE的距离为2.

如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,

由①知BE=CF,

∵BE=BC,

∴CE=CF,

∵∠ACB=45°,∠BCF=92°,

∴∠ECD=∠DCF,

∵DC=DC,

∴△CDE≌△CDF(SAS),

∴∠BAE=∠CBF,

∴CK=CH=2.【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)、两种笔记本每本的进价分别为20元、30元;(2)至少购进种笔记本35本【分析】(1)设种笔记本每本的进价为元,则每本种笔记本的进价为(x+10)元,根据用160元购进的种笔记本与用240元购进的种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进种笔记本本,根据购进的A种笔记本的价钱+购进的B种笔记本的价钱≤2650即可列出关于a的不等式,解不等式即可求出结果.【详解】(1)解:设种笔记本每本的进价为元,根据题意,得:,解得:.经检验:是原分式方程的解,.答:、两种笔记本每本的进价分别为20元、30元.(2)解:设购进种笔记本本,根据题意,得:,解得:.∴至少购进种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.23、(1)直线OC的函数表达式为;直线AB的函数表达式为;(2)①当小津追上小明时,他们没过夏池,理由见解析;②当小津到达陶公亭时,小明离陶公亭还有15千米,理由见解析.【分析】(1)先根据点C的纵坐标和电动汽车的车速求出点C的横坐标,再分别利用待定系数法即可求出两条直线的函数表达式;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论