历招收攻读入学考试试题及讲解数分_第1页
历招收攻读入学考试试题及讲解数分_第2页
历招收攻读入学考试试题及讲解数分_第3页
历招收攻读入学考试试题及讲解数分_第4页
历招收攻读入学考试试题及讲解数分_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

厦门大考试科目及代码: 数学分x2tarctanI.0xsin2xtan设0x1c(其中c为常数xn12xnn(n1,厦门大考试科目及代码: 数学分x2tarctanI.0xsin2xtan设0x1c(其中c为常数xn12xnn(n1,2收敛,并求极限limxnc2 1Idxx0x ..... ln(1x)x .2n sinF(x)1在区间[0,)连续,在(0,有连续导数6.I(x2y2SSx2y2z2R2z0)x2y2Rx7.I(z2x)dydz(x2y)dzdx(y2其中Szx2y2z0z1之间的部分,且积分沿曲面S下侧12001年数分答x2tarctanI0xsin2xtanxt2arctanx2arctan0xx21 x0340xncn1nk0xkc(xnk1时,xk12xk c,由于0xk2001年数分答x2tarctanI0xsin2xtanxt2arctanx2arctan0xx21 x0340xncn1nk0xkc(xnk1时,xk12xk c,由于0xkc,所以(xc)2c2kkkcc即得0xk1c,所以0xnc(nN,x又xn1xnxn n(cxn)0,得xn1xn;故{xn}为单调有界数列,必n ca2a敛,我们假设limxna或者acxn0,所以取limxnacn1xn解:已知ln(1x1,Ix01 0xx1 ...(1)n1 n01(x 0 1 ...2(1 111 1111122n222n1n补充两点:上述能做逐项积分是因为ln(1x我 有limln(1x)1,所以我们定义f(x)ln(1x),f(0)1xx(01设f(x)ln(1x)x ... (2n 1n1n补充两点:上述能做逐项积分是因为ln(1x我 有limln(1x)1,所以我们定义f(x)ln(1x),f(0)1xx(01设f(x)ln(1x)x ... (2n 1从上可知x ... ln(1x) f(x)ln(1x)x...2n2(02 (2n 所以ln(1x)x ... ; (2n g(xtsinsin1sin1dt111t1tsing(xt)F(x)01t2dt在[0,tcosdt0costdtxgx(x,1tg(x,t)dt一致收敛,即x1t0F(x)的导数存在.又因为gx(x,t)在[0,(0,)上连续,所以F(x)Sf(x,y,z)ds f(x,y,z(x,D1z2z2 其中z(x,y) R2x2y2,z,zxyR2x2R2x23f(xyz)dS(x2y2RdxdySD令xrcos,yrsin,其f(xyz)dS(x2y2RdxdySD令xrcos,yrsin,其中 x,0rRcos,于223RDr2Rrdr R5(x2y2)Rdxdy227.(GaussPz2x,Qx2yRy2原式3dxdydzy2VS21 (rsin 2200V544编者寄语我登上这列地周围是混乱,嘈杂,肮脏和4厦门大考试科目及代码: 数学分证明数列{x}收敛,其中x1, 1(x3),n1,2...,求极限lim厦门大考试科目及代码: 数学分证明数列{x}收敛,其中x1, 1(x3),n1,2...,求极限limxn1nn2xnfI上有定义,满足xIx(xx,f在(xxI上有界(1证明,Ia,b时,其中(ba0fI上有界(2)当I(a,b)时, f在I上一定有界吗?eyxlnxxxy0(x1,cosF(x)证明dt在区间(1上连续可微t(1)(1)n1sin1收敛n(1)n1sin1(2)lim (lnsinn6Ix2dydzy2dzdxz2dxdy,Sx2y2z21,z0S7.计算积分I Lx2y2z2R2z0)x2y2Rx(R0)的交线,从z轴的正面看去按逆时针方向.52002年数分答 1(x3)1233,所以xnn2 n310,所以xn又因为xn1xn xn)n22002年数分答 1(x3)1233,所以xnn2 n310,所以xn又因为xn1xn xn)n2可知数列极限存在,设limxa,对原等式两边取极限,得a1(a3)n a3,又因为xn0,所以limxna 32.(1)证明:设u{(xxxxxIIBorelI,使得u'(xxxxI xxn iinnI[a,b](xix,xix)I[(xix,xix)I]iiiif(x在(xixxixIf(xIii(2Ia,b时,f(xIf(x1x(0,1xg'(x)lnxygx0xeygx0xeygx0xeyg(e 0,从而 0,即得不等eyxlnxxy0(x1,ycos 1(1)11dt收敛,所以cos tttecostdt tgxt在(1,)(eF(x)te间(1,lntcost,由于tx6g(x,t)xtx11 (x1) x0ttgx(x,t)dt111(1)(1)n1 ,易知当n时, 0,且 是关于n单调减少的nnn(2)由上分析可知(1)n1sin1收敛,即关于xtx11 (x1) x0ttgx(x,t)dt111(1)(1)n1 ,易知当n时, 0,且 是关于n单调减少的nnn(2)由上分析可知(1)n1sin1收敛,即关于x是一致收敛的,又 关于nn(ln1单调递减(x[)),其中01x(ln1 (ln内闭一致收敛,又 n(1)n1sin(1)n1sin1lim nlim n (ln(lnnx0n36.由GaussI(2x2y2z)dxdydzV12 (rsincosrsinsinrcos)r220 127Stoze公式,LPdxQdy(R )dydz )dzdx )dxdy Pyz,QzRyRQ0,PR1,QP dxdydzdxR20R2447厦门大考试科目及代码: 数学分1.设{xn}xlim(1xn)nexn2f(x为[a,bf(xx0(a,bf厦门大考试科目及代码: 数学分1.设{xn}xlim(1xn)nexn2f(x为[a,bf(xx0(a,bf(x0)maxf'(x存在,f'(x)f003f(xf(0)0g(xf(x),xg(x) 1x 1dx,其中a0,b0为常数计算 ln0计算(xy)dxdy,其中x2y2xy的内部(2n 的和函数(7.设yyyFy)x2 dxFy'(8.设x1y,x2yA2uC 8变换 0,证明,必为C2BA0的两个相异的实根,其 2AB,CACB202003年数.变换 0,证明,必为C2BA0的两个相异的实根,其 2AB,CACB202003年数.{xn}(xnx0f(xnA(n)由{xn}x,我们可知{xn} 0(n)时,我们先来求此极限lim(1x)nnn nxnexHeine定理,我们马上得到lim(1xn)nexnn.f(xf(xx(xxf'(x)f'(x)fx 0 0有f(x)f(x0)xf(x)f(x0)xf(x)f(x0)f'(x)f('x) xx0x0f(x)f(x0)f'(x)f('x) xx0x0f'(x)0 )limg(xlimf(x(0型fxf0,所以g(x为连续函数 9xf'(x)fx0g(x'g(x)f(x)xf'(0)(0)f'',x20xf'(x)f(x)(0)f''又limx0g(x'g0gx存在且连续20111bb14.解:原式 xdy dy )xyyxx0aa011IF(y) )xdxxf'(x)fx0g(x'g(x)f(x)xf'(0)(0)f'',x20xf'(x)f(x)(0)f''又limx0g(x'g0gx存在且连续20111bb14.解:原式 xdy dy )xyyxx0aa011IF(y) )xdxyx01111x1111对于F(y) )xydx xy1 )xyxx00011111 )xdx )y )xy2y=yxx0011I,(y(y1)21xb11bdx (y1)21 ln0axrcos25.1yrsin222(xy)dxdy(rcosrsin 22rdrd 2 (2n3)6.解:设u(x)(2n1)x2n,由于un1x0nn(n1)!(2nun从而收敛域为(,)2n111 )2n1 xe(xx,(2n =(xe)(12x)e2x2)dxe2(y)y'(y)e2(y)y'((Fy((22(y)2(y)2x(2n =(xe)(12x)e2x2)dxe2(y)y'(y)e2(y)y'((Fy((22(y)2(y)2x(y)y(y)y x e(uuu,2u 2u ,8.,2 ],11 221 212 12022(A2BC (A2BC22 22CA2,所以必为C22BA0的两个相异的实根11 A2BC222我来自偶然像一颗尘我看遍这人间坎坷辛厦门大考试科目及代码: 数学分一1.设{xn}不趋向无穷大,则{xn}必有收敛的子列对,无界必有发散到无穷大的子列,非无穷大2.f(x)在非空开区间(a,b厦门大考试科目及代码: 数学分一1.设{xn}不趋向无穷大,则{xn}必有收敛的子列对,无界必有发散到无穷大的子列,非无穷大2.f(x)在非空开区间(a,b(a,b),x1x2(a,bx1x2,使f(x1)f(x2)f()x1f(xx3n1k3.设函数f(x)在区间[0,1]上有定义,且极限 f()存在,则此时f(x)nnk1nnf(k)n1k区间[0,1]上可积,且0f(x)dxlimDirichle函数4.设函数项级数fn(xI,上一致收敛,且fn则(1)n(xnxn1二.(1)liman其中an11...12(2)lim(x2y2 yx,2f(x在[a,f(a0,fa0xafx0f(x)02(2)lim(x2y2 yx,2f(x在[a,f(a0,fa0xafx0f(x)0在[a,bf(xdx0三、设有界函f(x)在[a,bf(xaf(x01 xln)n(ppnn四、讨论 的变换x(uz2z2五、zz(xy满足y(u,, 220六、若函数uu(x,yzu2u0,uu(x,yz)为该区域内的调和函数。证明若 u(x,y,z)为区域{(x,y,z)R3:(xx)2(yy)2(z a}内的调和00014a2u(x,y,z)u(x,y, S其中a0S为球2004二.大 1an1,其中a11,我假an12,那么an 1an12an又 1a1,2004二.大 1an1,其中a11,我假an12,那么an 1an12an又 1a1, n1a1n2 a,故{a}为压缩数列,所以{a} nnlimaa则可得a1a,解得a5n2x2y2limln(x2y2 (xy)ln(xy yx,y0x2x,x2(x2y2因为0x2y2x2 x2令x2y2且lim(x2y2)ln(x2y2 limtlnt0,所以原极限e0x,x,.利用Taylorxa处Taylorf((xa2,(ax取区间为[aaf(a)]f(x)f(a)f'(a)(xa)f'2f(x在区间的两个端点是异号的,所以在[aaf(a)f'理我们知道(xx 在[a,).0x(xxf(xa0002f(x)dxf(x)dxa2a0bbf(x)dxf(x)dxf(x)dx2aabf(xdx0a设a1xlnn)n,注意到limlnn0,所以.0x(xxf(xa0002f(x)dxf(x)dxa2a0bbf(x)dxf(x)dxf(x)dx2aabf(xdx0a设a1xlnn)n,注意到limlnn0,所以N,nN,有a0nnnn项级数。利用Taylorln(1x)x1x2o(x2)(x0可2aexp[nln(1xlnn)]exp{n[xlnn1(xlnn)2o((xlnn)2nn n32(xln13xln))]} )] 2 nnn21(1xln px1px1~npnzzx yu5.2(zz)z (zz)z,uuxx ux xy z,2z(zz)z(zz)z zx yxx xy x xy yy y2z2 zx zxxu zxyu zxyu zyyu22 和 ,zzz 结合22 2z26.f(au(xyz)dSM0x0y0z0xx0asinyyasinsin(0,020zz6.f(au(xyz)dSM0x0y0z0xx0asinyyasinsin(0,020zza f(a)0d0u(xyz)asind2f(a) u(x,y,z)sin'00(usincosusinsinucos)d2I asin2dxyza0(u(n,x)u(n,y)u(n,z))dS(n (a)的单位外法向量xyzd(uxsincosuysinsinuzcos)a2sindI(a00(ux(n,x)uy(n,y)uz(n,z))dSuxdydzuydzdx=(uxxuyyuzz)dxdydza2f'(a)1f(a) u(x,y,z)a1 ,令a0c22a c0d0u(M0)sindu(M0)224u(M0)1 f(a)14a2所以u(M) f u(xyz)dS,证 0S厦门大考试科目及代码: 数学分一、判断数列f(xn提示:错,数列厦门大考试科目及代码: 数学分一、判断数列f(xn提示:错,数列f(xnf(x)x0f(xnf(x0).2.f(x定义在(a,bf(xx0(a,b)limm()limM(其中m(infxxx)f(xM()supxxx)f(x 提示:由上可知lim(m(M(0,infx(x,x)f(x)supx(x,x)f 对于infx(x,x)f(x)supx(x,xf(x)f(x0)3.fnaxRf '(a)(xf''(a)......(xa)nf(n)f(x)f(a)(xa)fxaTalyor4.设f(x)在(a,b)[cda,b)(cd(cd)f(df(cf)(dc),则(c,d)是c,d(cdbnf(knkbf(x)在[a,b]Raf(x)dx.nbbnbf(a提示:错,将区间均分可得af(x)dxk)nbnf(knkbf(x)在[a,b]Raf(x)dx.nbbnbf(a提示:错,将区间均分可得af(x)dxk)nnk1.设x1, 1(x5),n1,2...证明x存在,并求xnn0n2xnf(x在区间[0,l上连续及当0l时(x)2y2z20l u(x,y,z)dy20(x)2y2n3.设f(x)anxn的收敛半径为,令fn(x) k限区间[a,bf(f(x4.设函数f(x)[a,b]上可积,证明存在[a,b]上的多项式函数列n(x)(n1,2...)使bb (x)dx f(x)dxnna1 XdYYdXI X2YCXaxby,YcxdyC为包围原点的简单封闭曲线(adcb0)2005年数二.大1.证明: 1(x5)15 5n2 n55 2 x x n n nnnxn10,xn1xn,数列{xn}是单调递减且有下界,所以limnxn接下来求limnxn,设limnxnl12005年数二.大1.证明: 1(x5)15 5n2 n55 2 x x n n nnnxn10,xn1xn,数列{xn}是单调递减且有下界,所以limnxn接下来求limnxn,设limnxnl1(l)l f(x)连续可知, f( 也是连续函数,(x)2y22.1f()2(xf()(xl3d3d所以0[(x)2y2z2]0[(x)2y2z2]2 flld,同理我们可 d[(x)y3[(x)y50 0 f()luyd30[(x)2y2z2] f() flld d3252[(x)yz[(x)yz 200f()luzd30[(x)2y2z2]f(f()ll3d5d0[(x)2y2z20[(x)2y2z2] f()[(x)yz flldd所以 [(x)y3[(x)y50 0 ]3.证明:由f(x)的收敛半径为,可知在任何有限区间[a,bf(x)(Abelfn(xf(x,所以10,N0,当nNfn(xf(x)1对x[a,b]0,0,x,现在只要让1f(x)f(x0ffn(xff(x))x[a,bffn(Abelfn(xf(x,所以10,N0,当nNfn(xf(x)1对x[a,b]0,0,x,现在只要让1f(x)f(x0ffn(xff(x))x[a,bffn(x在任何有限区间[a,bff(x4.[a,b作n等分,设分点为a(n)x(n) x(n)x(n)即 1ai(ba),iin(x为过点在 (n),f(x(n))][x(n),f(x(n)及iiinix(n),x(n) xn(x)f(xi1)[f(xi)f(xi1x(n)i则n(x是[a,b若令m, 及 分别表示函数f(x)在[x(nx(n上的下确界和 iiii(n),x(n) (x)(x)M(n),m(n)f(x)ifniin x(nnbbbf(x)(x)dxf(x)dx f(x)(x)dx i(n nnn xbn 0时, nbb所 f(x)dx (x)dxnaaX2Y20PYX5.P,QX2Y ax,行列式adcb0xyX,Y又YcxaxbyR,0YcxdyRxRdcosaxbyR,0YcxdyRxRdcosRbadadbcy R2cos2R2sin2 XdY XdYI d XlX2Y022厦门大考试科目及代码: 数学分一判断2.f(x)为可微函数,则f'(x)dx(f(x)dx)'F厦门大考试科目及代码: 数学分一判断2.f(x)为可微函数,则f'(x)dx(f(x)dx)'F(xFxfx)dxf(x)dxFx(f(x)dx)'f(x),所以Fxf37(对1提示错,f(x) x,x(0,1]其导数为f'(x)x0,fx2xsgn(xr1.我们将有理数排成一个数列r n的连续性f(x)n2.f(x在(,a(,)x(,)1x [f(th)f(t)]dtf(x)fh0a3.x0(a1a2an是nnf(x)f(x1,x2,...xn)ijxixi,jn在单位球{x(x,x,...x)Rn x21}内的极值点,则必存在R使得 nAx0x01n12An221n12An22nnn1f(axbycz)dxdydz u)f(ku)du,其中k a2b2c202x2y2z2四、设a,bc为常数。证明由方程axbycz(x2y2z2确zz(xy(cybz)z(azcx)zbx2006二.大1.证明:设u(x)sgn(xrn,对于nN,xR1,由1nn敛,所以由M判别法可知u(x)sgn(xrn)n10当r时,u(xx处连续,取2006二.大1.证明:设u(x)sgn(xrn,对于nN,xR1,由1nn敛,所以由M判别法可知u(x)sgn(xrn)n10当r时,u(xx处连续,取0充分小时,u(x在(,nnn仍连续,又因为un(x在(,f(xx20rk1,2...时,f(xsgn(xrn在,ksgn(xrxrxr处间断,f(xxr处间断kkkk1x2.证明:左边= [f(th)fh0a1x= f(t)dt f halimf(xhf(ah(L'Hospital法则=f(xf(af(xx2x2 x2a(0a1 nnL(x1x2xni,jxx(xxxaxaa,...a应满 2iji n 0,即xxxx0(ii1 i2in ix1x1x1 a1x xx aA22其中22... ...x ax xn nn n4.axbycz0lk1{abcuk1(axbycz),va1xb1yuk1(axbycz),va1xb1yc1z,wa2xb2ycJ1D(uvw)1则由正交变换性质可知:{(uvwu2v2w21}D(x,y,1f(ku)Jdudvdw f f(axbycz)dxdydzx2y2z2u2v2w2v2w21= u)f25.证明:对方程axbycz(x2y2z2a2x'x球偏导acz(2x2zzzx2z'xb2y''(2y2zy求偏导by,解zy2z'代入(cybzzazcx(cybz)a2x'(azcx)b2y'(bxay)2z'(bx2z'bx2z'2z'厦门大考试科目及代码: 数学分一判断若{xn}无界,则limnxn无界厦门大考试科目及代码: 数学分一判断若{xn}无界,则limnxn无界至少存在一个发散的子列;非无穷大若{xn}无界,则{xn}提示:对,从上我们可知,若{xn}是无界的,设其为是非无穷大的,明显个子列收敛情况是不一样的,可知其是发散的。也可以考虑其逆否命题:若{xn是收敛的,则{xn}有界,显然逆否命题是从3.若{xn}单调有下界,则{xn}提示:错,一个数列单调上升到无穷大,但是有下界,明显{xn}是发散的4.若{xn}收敛,则{xn}有界设函数fn(x为闭区间[abf(xf(xf(xf(c)3.设f在c处右可微, f'RfRx在0使得对所有t(ccf(tf(c0f(ak(ba))]n[14.设f(x)在区间[a,b上连续,求极限nnkns1s1时发散,其中[a表示ans1s1时发散,其中[a表示a226.设uf(r),r x2y2z2,f为两次可微函数。证明uF(r),其u2uF(r) 2007年数分答二.大设数列{an}单调上升且有上确界,则nNan又对0,存在aN,使得aN,又因为an单调上升,所以当nN时,有an,即an2007年数分答二.大设数列{an}单调上升且有上确界,则nNan又对0,存在aN,使得aN,又因为an单调上升,所以当nN时,有an,即an所以an2.fn(xf(x30N当nNf(x)f,对x[a,b]都成立n0,xf(x)f(x0n 3f(x)f(x0f(x)fn(x)fn(x)fn(x0)fn(x0)f(x0 f(x)f(x)f(x)f(x)f(x)f(xnn 0f(x3.证明: A0,由极限的保号性知,存在0,使得当0xc时fRf(x)f(c)A0x(cc)fxc0Rx2f(x)f(c)0证明:[a,b上的连续函数在[a,b上必可积.参见课本把[a,b作n等分,分点为abakk1,2,...nn[aba(k1abak中取点abakff(abak)kknnnn是f(abanbabf(x)dxnk1所以limn[abbf(a))]f(x)dxnknan{111}(I(n2[(n1)2111设u ,级数(I中共有2n1项,前nn(n2[(n1)1所以limn[abbf(a))]f(x)dxnknan{111}(I(n2[(n1)2111设u ,级数(I中共有2n1项,前nn(n2[(n1)21n21后n1和(ns1222u(x)u0,又因为{unn(nn以(I即设原来级数的部分和数列为{Sn,而级数(I部分和数列为{n,那么nNmmSnm1或者m1Snm,从Snm10s1u0,n2y2x6.证明:uxf' ,uxx 'uyyuzz可以类似求得rrry2所以uxxuyyuzz 'rrx2+f f'rx2+f f'rf'rf''=2f所以uF(r)=f r厦门大考试科目及代码: 数学分一.判断f(xIR设厦门大考试科目及代码: 数学分一.判断f(xIR设)x(4)f(xI,上有界且limxf(xf(xI.1.设{x}为有界正实数列,求nxx... nlimxg(xu0f在uu0处连续。证明:2.设limxf(g(x))f(u03.f(x在(,1(nxCex其中Cf(n)(x)f(n1)(x)f4.设DR2若f(xy))2dxdyD5.设{nan}收敛,级数n(5.设{nan}收敛,级数n(anan1收敛,证明anIcos(axbycz)dxdydz,其6.计算在单位球Vx2y2z21Va,bc2008年数分答二.大1.解:设Snx1x2 S存在时,那么 x0,所以当nnxx... n当limnSn时,因为{xn}xnM(2008年数分答二.大1.解:设Snx1x2 S存在时,那么 x0,所以当nnxx... n当limnSn时,因为{xn}xnM(M0数,所以xx... n2.limxg(xu010M0,Mg(x)f(u在uu0f(u)f(u0)00,u我们取1,所以f(g(xf(u0Mg(x)x3.1f(np)(x)f(n)(x)f(n1)(x)由f(np)(x)f(n)f(np1)(x)f(np1)(x)....f(n1)(x)f(n)11f(np)(x)f(np1)(x) f(n1)(x)f(n)p(n(n考虑级数1,该级数是收敛的,所以由Cauchy收敛准则0,NnN11,对pN(n(n对pN都成立由Cauchy收敛准则可知 f(n)f(np)(x)f(n)()nny'y111yedx(o() dxCCedxAedxo()edxC'exBo(A'nnn为常数,所以当n时,有limnny'y111yedx(o() dxCCedxAedxo()edxC'exBo(A'nnn为常数,所以当n时,有limnf(n)(xCe'x其中C'4.证明:反证法,fD中的连续点(x0y0上的取值不为0,当x(x0x0f(x0,y0)A,Ay(y,D,(xy)Df(xy0002因此f(xy))2dxdyf(xy))2dxdyf(xy))2dxdyf(xy))2DA20,这与f(xy))dxdy0dxdy244Dnnn(i1)(ai1ai)nannan(i1)(ai(iinn又(i1)(aiai1i(aiai1),n(anan1)收敛又 }单调有界ii{nan 1Abel判别法可知(i即ian6.解:作坐标系的旋转变换,将oxy旋转到平面axbycz0axbya2b2这时x轴和y轴被旋转到0的平面内,把它们分别记为,轴,根据解析1,{(,,)222J记k a2b2c2,则Icos(axbycz)dxdydzcos(kVsin41 sin41 )cos(k)d 2coskk0厦门大考试科目及代码: 数学分一选择1.设{an}为单调数列,若存在一收敛子列{an},这时(AjB.{an}C.{an}j厦门大考试科目及代码: 数学分一选择1.设{an}为单调数列,若存在一收敛子列{an},这时(AjB.{an}C.{an}j2.f(xR上为一连续函数,则有(CIAIf(IBf(I为闭区间时DA.B.C都不一3.设在某去心邻域U0x0 ]'(x) f'(x)=;B.若在连续,则A0flim004.f(x在[a,b]R.]f(x)在[a,bf(xf(xf(x在[a,b5.设un.[DA.若limu0,则收敛,则limB. nnn收敛,则 nn1.设a0,0a1(a1(a),n1n2a2an1.设a0,0a1(a1(a),n1n2a2an2.f(x在区间[a)g(x在区间[a)limx(f(x)g(x))f(x)在区间[a)3.f(x在(,f(0)f0)0.0,xg(x)f,xxg(x在(,)sinn(1)级数在(,)(2)存在,使得 22009年数分答二.大证(单调有界必有极限从题中a0所以 1(a)12nnn2 ann即数列{an}有下2 a1a a 1a0,即 n nnn2 所以数列{an}是单调递减的,所以{an}必有由 2009年数分答二.大证(单调有界必有极限从题中a0所以 1(a)12nnn2 ann即数列{an}有下2 a1a a 1a0,即 n nnn2 所以数列{an}是单调递减的,所以{an}必有由 1(a),两边令n,设limal,则l1(l),解得lnn2a n2.f(xg(x00,ax时,f(x因。3g(x)在区间[a上一致收敛,故对0,10,1x''g(x'')g(x')xx',x'31f(xg(xf(x'')f(x'f(x'')g(x''g(x'')g(x'利用Cantorf(x在[a1]020,xx'[a1]xx2时,f(x'')f(x'取min{1,2}xx'[axxf(xf(x,首先 g(x) f(x)(0型)fxf00,所以g(x) x0g(x在(,g(x)f' f''f(x)(0)g'(0)x20g(x)(f(x)'xf(xf'xf'(x)f(x)(0)f''(0)g'(x)x02g(x在(,)4.解:(Guass公式的运用Pxy2,Qyz2Rzx2,由GuassPQRVxydydzyzdzdxzxdxdy222 dxdydz (xyz sVxrcosyrsin,5V11(xyg(x在(,)4.解:(Guass公式的运用Pxy2,Qyz2Rzx2,由GuassPQRVxydydzyzdzdxzxdxdy222 dxdydz (xyz sVxrcosyrsin,5V11(xyz)dxdydz (rz)rdr 30nsinsinn2(1)证:设un(x ,级数nsinn拉斯判别法可知级数在(,)(2)证:设a(x)ncosx 1n斯判别法知an(x)是一致收敛的,又刚好an(x)un(x)的导数形式,所以sinnn2sinnsin2=f(x),问题现在转化为:存在 ),使得f() '= 2sinn222cosf'(x)(2sin (2sin110xcos1]x0时g(0)4g(x)(2sin621g() )0,由介值定理可知存在 ) ),使 662 .厦门大考试科目及代码: 数学分一选择fx3[fx)]22exf(x0x1f(x)0f(xf(x00f(x厦门大考试科目及代码: 数学分一选择fx3[fx)]22exf(x0x1f(x)0f(xf(x00f(x(BB.取极小值;C.不取极值;D2f(x)lnxxk,(k0)在区间(0,(CeBCA.D3.已知当x0时,函数etanxex与xn为同阶无穷小,则n (CABCD(AAf(x在[abRiemannbf(x)dxF(b)FaxBf(x在[abRiemann可积,则f(t)dt在[abaf2x在[abRiemannCf不一定在[abRiemannfD若在[abRiemannf(x在[abRiemanna5.设a0f(x在(aa(Bfx0x,I f(x)dx2fBI0CI0IAD1.设f(x)a1sinxa2sin(2x) ansin(nx),f(xsinxai(i1,2...n实常数,证明a12a2 2.f在(,上一致连续,0,在(,Igf(z):yz(xx)},证明g在(,g(x)sup{f(f(z):yz(xx)},证明g在(,g(x)sup{f(y)xIf''(x)011aaaf a00x4.设f0(x)在区间[0,a]上连续,令f(x) fn1(t)dt,nn05.f(xyax22bxycy2x2y21其中(b2ac0,a,bc06.zz(xyF(xzyz0Fyxxzyzxy 2010年数学答二.大1.f(xsinxf(00f'f(xcosnx,令x0并取其绝对nf'(x)acosx2acos2x 12 f'2.f在(,上一致连续,所以0,0x''xxI2010年数学答二.大1.f(xsinxf(00f'f(xcosnx,令x0并取其绝对nf'(x)acosx2acos2x 12 f'2.f在(,上一致连续,所以0,0x''xxIf(x'')f(x'g(x'')g(x'f(y'')f(z'')f(y')f(z'现,x''),y',z'(x',x')y'',z''supf(y'')f(z'')supf(y')f(z'f(y'')f(z'')f(y')f(z'f(y'')f(z'')f(y')f(z'y''y'f(xg(x'')g(x'f(z')f(z'')}f(y'')f(z'')f(y')f(z'sup{f(y'')f(y')g在(,3.证明:(Jessen不等式nn是下凸函数,所以f(xf(xfx0我们可知函数i nnaina1,上述可以用归纳法证明。又(xixi a(t)dtnn0n1n1n n11af( aa(x)),所以f f[(t)]dt))))(t)dt)ffiin a00sinxfxf(x)fxfx0我们可f是下凸函数,所f(xf(xfx)(xx0001f 11aaaa(t)dt,则f(x)f (t)dt)a(t)dt)(x0aaa0000x(t111aaaf((t))f (t)dt)f (t)dt)((t) 'fx0我们可f是下凸函数,所f(xf(xfx)(xx0001f 11aaaa(t)dt,则f(x)f (t)dt)a(t)dt)(x0aaa0000x(t111aaaf((t))f (t)dt)f (t)dt)((t) 'aaa000两边都在区间[0,a111aaaaaa(t))af (t)dt)f (t)dt (t)dt)af 'faaa00000011aaa则f (t)dt)a00f0(x在区间[0,a上连续,故在[0,a0,使得4.证明:因Mf0xxxf0(t)dtMxf(t)dt tdt;f21000xdt0对x[0,a];fn(n(n05.axby0, f'fbxcy bc0,故只有唯一解(0,0)f(0,0)x2y21Lax22bxycy2(x2y20,得到方 (a)xbybx(c)yx2y21上(x,y)(0,0)a cac (ac)2得1,22f(xyax2bxycy22x2y21aa cac (ac)2得1,22f(xyax2bxycy22x2y21ac(ac)2maxf(x,y)max{0,1,2}2ac(ac)2minf(x,y)min{0,1,2}26.F(xzyz0xyyxz)0,F zz)F(1zy)01yF(11z(11 2yxxFF12 1,zxxxyyF F 1 1 xzyzxy 厦门大考试科目及代码: 数学分一 选择1yf(xx2'(x)00''(x)0,则(Af B厦门大考试科目及代码: 数学分一 选择1yf(xx2'(x)00''(x)0,则(Af BCD2.f(x)lnxx在区间(0,内的零点个数为(ABCAD3.x0时,函数esinxexxn为同阶无穷小量,则n(CABCDAf(x在[a,bRiemannF(xx f(x)dx]'fafBf(x在[a,bRiemann在[a,bf2x在[a,bRiemannCf一定在[a,bRiemann若f在[a,bRiemannf(x在[a,bRiemannD1x,I 45.f(x在(1,1)f I0 I0I0CD1.f(x在[0,1]f(0)f(1)0minf(x1存在(0,1),使二、fC[0,1 f()1x2dx f2三、f(x在[0,1上连续,证明t01f(x)dx二、fC[0,1 f()1x2dx f2三、f(x在[0,1上连续,证明t01f(x)dx]2f210t2x[dxt 0四、设01limanaa1lim(na a a).01 五、设fn(x) cosx,x[1,1],n为正整数,证明(1)fn(xx[1,111f(x)dx limf(x)dx(2)nnnf(a17.设f(x)在a点可微,且f(a)0,求极限 nf8.计算[0,][0,1]y1kk.9.计算2011年数学答二.大f(x10可知函数的最小值在内部达到,所以x0(0,1)1.证明:由f(x)minf(x1f(xf')0000,(0,1)使得xx0处按Taylor0f(0)f(x)1f''()(0x)2;0f(1)f(x)1f''()(1x)22011年数学答二.大f(x10可知函数的最小值在内部达到,所以x0(0,1)1.证明:由f(x)minf(x1f(xf')0000,(0,1)使得xx0处按Taylor0f(0)f(x)1f''()(0x)2;0f(1)f(x)1f''()(1x)20000222212f,f''()所以当x(0,]时,f''() 80(1200012x[,10(12f2.x dx f(0) ] [f()f(0)] lim f(1110 f()fdx10该反常积分是收敛的,由Cauchy1对0,AAAA 1x1x1x1A0[f()f1x 1xdx [f()f dx [f()f 120x0x[0,A],又,所以0,当取的适当大时fxf(0),所以当fC[0,10x1x1AA0[f()f(0)]1x2[f()f(0)]1x2dxM现在考虑第二个积分:当x1x1A[f()f(0)]1x2A[f()f(0)]1x2dxMx1所以 [f()fdx0101f(x) fdx]21f21111 dx]2dx[dxtttt2 t20000d(x)1arctan(1)1 dx11又xtx1x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论