版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海丰华中学2023-2024学年数学高一上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数fx=2A.-2 B.-1C.-123.不等式的解集为R,则a的取值范围为()A. B.C. D.4.若方程则其解得个数为()A.3 B.4C.6 D.55.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}6.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π7.设,且,则的最小值为()A.4 B.C. D.68.设,则A. B.C. D.9.已知,则的值为()A.3 B.6C.9 D.10.三棱锥的外接球为球,球的直径是,且,都是边长为1的等边三角形,则三棱锥的体积是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若存在,使得f()=g(),则实数a的取值范围为___12.函数的最小值为_______13.若,则____14.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________15.已知幂函数(为常数)的图像经过点,则__________16.设,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数(1)求实数的值;(2)判断函数的单调性,并利用定义证明18.已知为角终边上的一点(1)求的值(2)求的值19.已知函数是定义在R上的奇函数,当时,(Ⅰ)求函数在R上的解析式;(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由20.设是两个不共线的非零向量.(1)若求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线.21.对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若是由“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据充分性、必要性的定义,结合特例法进行判断即可.【详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A2、A【解析】直接代入-1计算即可.【详解】f故选:A.3、D【解析】对分成,两种情况进行分类讨论,结合判别式,求得的取值范围.【详解】当时,不等式化为,解集为,符合题意.当时,一元二次不等式对应一元二次方程的判别式,解得.综上所述,的取值范围是.故选:D【点睛】本小题主要考查二次项系数含有参数的一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题.4、C【解析】分别画出和的图像,即可得出.【详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【点睛】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.5、B【解析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.6、D【解析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D7、C【解析】利用基本不等式“1”的代换求目标式的最小值,注意等号成立条件.【详解】由,当且仅当时等号成立.故选:C8、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小9、A【解析】直接由对数与指数的互化公式求解即可【详解】解:由,得,故选:A10、B【解析】试题分析:取BC中点M,则有,所以三棱锥的体积是,选B.考点:三棱锥体积【思想点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【详解】因为,所以,故,即因为,依题意得,解得故答案为:.12、【解析】根据正弦型函数的性质求的最小值.【详解】由正弦型函数的性质知:,∴的最小值为.故答案为:.13、##0.25【解析】运用同角三角函数商数关系式,把弦化切代入即可求解.【详解】,故答案为:.14、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用15、3【解析】设,依题意有,故.16、【解析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【详解】解:因为,所以,所以故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)为减函数;证明见解析【解析】(1)根据奇函数的定义,即可求出;(2)利用定义证明单调性【详解】解:(1),由得,解得另解:由,令得代入得:验证,当时,,满足题意(2)为减函数证明:由(1)知,在上任取两不相等的实数,,且,,由为上的增函数,,,,,则,函数为减函数【点睛】定义法证明函数单调性的步骤:(1)取值;(2)作差;(3)定号;(4)下结论18、(1);(2)【解析】分析:(1)直接利用三角函数的坐标定义求的值.(2)先求的值,再求的值.详解:(1)由题得(2)∵在第一象限,∴∴点睛:(1)本题主要考查三角函数坐标定义和同角的三角函数关系,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)点p(x,y)是角终边上的任意的一点(原点除外),r代表点到原点的距离,则sin=cos=tan=.19、(Ⅰ);(Ⅱ)存在实数使得的最小值为【解析】Ⅰ根据奇函数的对称性进行转化求解即可Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可【详解】Ⅰ若,则,∵当时,且是奇函数,∴当时,,即当时,,则Ⅱ若,,设,∵,∴,则等价为,对称轴为,若,即时,在上为增函数,此时当时,最小,即,即成立,若,即时,在上为减函数,此时当时,最小,即,此时不成立,若,即时,在上不单调,此时当时,最小,即,此时在时是减函数,当时取得最小值为,即此时不满足条件综上只有当才满足条件即存在存在实数使得最小值为【点睛】本题主要考查函数奇偶性的应用,以及利用换元法转化为一元二次函数,结合一元二次函数单调性的性质是解决本题的关键,综合性较强,运算量较大,有一定的难度20、(1)证明见解析;(2).【解析】(1)利用向量共线定理证明向量与共线即可;(2)利用向量共线定理即可求出【详解】(1)∵,∴//,又有公共点B∴A、B、D三点共线(2)设,化为,∴,解得k=±121、(1);(2)【解析】⑴由已知得,求解即可求得实数的值;⑵设,则,继而证得是偶函数,可得与的关系,得到函数解析式,设,则由,即可求解的最小值为解析:(1)由已知得,即,得,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于YOLOv5增强模型的口罩佩戴检测方法研究
- 2025版智能电网设备ODM委托加工合作协议书3篇
- 北京市房山区2024-2025学年高二上学期期末考试政治试卷(含答案)
- 二零二五年度信息技术行业劳务派遣协议3篇
- 贵州警察学院《小学语文教材研究和教学设计》2023-2024学年第一学期期末试卷
- 二零二五年度国有企业股权纠纷调解与仲裁协议3篇
- 2024年电子商务专业校企共建实验室协议2篇
- 2024版专业工程涂料施工协议范本版B版
- 2024版公园绿化施工队伍劳动协议
- 2024年车辆租借协议模板专业版版B版
- 信号分析与处理-教学大纲
- 河道整治工程运营维护方案
- 国家医疗保障疾病诊断相关分组(CHS-DRG)分组与付费技术规范(可编辑)
- 高压变频器整流变压器
- 《新唯识论》儒佛会通思想研究
- 《减法教育》读书笔记思维导图PPT模板下载
- 慢性阻塞性肺疾病全球倡议(GOLD)
- 工程项目管理(第五版)丛培经 第七章
- 全二年级下册数学北师大版教材习题参考答案
- 氢氧化锂MSDS危险化学品安全技术说明书
- 四年级小学英语答题卡模板1
评论
0/150
提交评论