上海市北中学2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
上海市北中学2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
上海市北中学2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
上海市北中学2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
上海市北中学2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市北中学2024届高一数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1252.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.已知,则()A.-4 B.4C. D.4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则5.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°6.曲线与直线在轴右侧的交点按横坐标从小到大依次记为,,,,,…,则等于A. B.2C.3 D.7.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3C.92cm3 D.84cm38.已知点是角α的终边与单位圆的交点,则()A. B.C. D.9.把11化为二进制数为A. B.C. D.10.已知,,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.果蔬批发市场批发某种水果,不少于千克时,批发价为每千克元,小王携带现金3000元到市场采购这种水果,并以此批发价买进,如果购买的水果为千克,小王付款后剩余现金为元,则与之间的函数关系为_______;的取值范围是________.12.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.13.若函数,则______14.已知(其中且为常数)有两个零点,则实数的取值范围是___________.15.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.17.已知非空集合,.(1)当时,求,;(2)若“”是“”的充分不必要条件,求的取值范围.18.已知函数,(1)求函数的最小正周期;(2)用“五点法”做出在区间的简图19.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.20.已知().(1)当时,求关于的不等式的解集;(2)若f(x)是偶函数,求k的值;(3)在(2)条件下,设,若函数与的图象有公共点,求实数b的取值范围21.如图,在棱长为2的正方体中,E,F分别是棱的中点.(1)证明:平面;(2)求三棱锥的体积.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D2、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.3、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.4、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.5、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.6、B【解析】曲线与直线在轴右侧的交点按横坐标从小到大依次记为,曲线与直线在轴右侧的交点按横坐标转化为根,解简单三角方程可得对应的横坐标分别为,,故选B.【思路点睛】本题主要考查三角函数的图象以及简单的三角方程,属于中档题.解答本题的关键是将曲线与直线在轴右侧的交点按横坐标转化为根,可得或,令取特殊值即可求得,从而可得.7、B【解析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)∴该几何体的体积V=6×6×3﹣=100故选B考点:由三视图求面积、体积8、B【解析】根据余弦函数的定义直接进行求解即可.【详解】因为点是角α的终边与单位圆的交点,所以,故选:B9、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故选A.10、B【解析】利用充分、必要条件的定义,结合不等式的性质判断题设条件间的推出关系,即可知条件间的充分、必要关系.【详解】当时,若时不成立;当时,则必有成立,∴“”是“”的必要不充分条件.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.②.【解析】根据题意,直接列式,根据题意求的最小值和最大值,得到的取值范围.【详解】由题意可知函数关系式是,由题意可知最少买千克,最多买千克,所以函数的定义域是.故答案为:;12、1800【解析】由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;考点:抽样方法的随机性.13、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:14、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.15、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解】(1)函数f(x)cos(2x)中,它的最小正周期为Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调增区间为[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调减区间为[kπ,kπ],k∈Z;(2)x∈[,]时,2x≤π,所以2x;令2x,解得x,此时f(x)取得最小值为f()()=﹣1;令2x0,解得x,此时f(x)取得最大值为f()1【点睛】本题考查了三角函数的图象与性质的应用问题,熟记单调区间是关键,是基础题17、(1),(2)【解析】(1)先解出集合B,再根据集合的运算求得答案;(2)根据题意可知A.B,由此列出相应的不等式组,解得答案.【小问1详解】,,故,;【小问2详解】由题意A是非空集合,“”是“”的充分不必要条件,故得A.B,得,或或,解得,故的取值范围为.18、(1);(2)答案见解析【解析】(1)利用两角和的正弦公式及二倍角公式化简即可得解;(2)列表,描点,即可作出图像.【详解】(1)由题意所以函数的最小正周期;(2)列表00作图如下:19、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函数的对称轴方程为;【小问2详解】,,时,函数单调递减,即时,函数在上单调递减;时,函数在单调递增,即时,函数在上单调递增.,函数的值域为.20、(1)(2)1(3)【解析】(1)根据条件列指数不等式,直接求解即可;(2)利用偶函数定义列直接求解即可;(3)根据题意列方程,令,得到方程,构造,结合二次函数性质讨论方程的根即可.【详解】(1)因为所以原不等式的解集为(2)因为的定义域为且为偶函数,所以即所以.经检验满足题意.(3)有(2)可得因为函数与的图象有公共点所以方程有根即有根令且()方程可化为(*)令恒过定点①当时,即时,(*)在上有根(舍);②当时,即时,(*)在上有根因为,则(*)方程在上必有一根故成立;③当时,(*)在上有根则有④当时,(*)在上有根则有综上可得:的取值范围为【点睛】本题重点考查了函数方程的求解及二次函数根的分布,用到了换元和分类讨论的思想,考查了学生的计算能力,属于难题.21、(1)证明见解析(2)【解析】(1)连接,设,连接EF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论