上海师大学附中2023年高一数学第一学期期末预测试题含解析_第1页
上海师大学附中2023年高一数学第一学期期末预测试题含解析_第2页
上海师大学附中2023年高一数学第一学期期末预测试题含解析_第3页
上海师大学附中2023年高一数学第一学期期末预测试题含解析_第4页
上海师大学附中2023年高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海师大学附中2023年高一数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知,,则的估算值为()A. B.C. D.2.已知,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.当时,若,则的值为A. B.C. D.4.函数的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A. B.C. D.5.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.86.设,则()A.3 B.2C.1 D.-17.设函数的部分图象如图,则A.B.C.D.8.函数在区间上的最大值为A.2 B.1C. D.1或9.设函数,点,,在的图像上,且.对于,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④10.设函数,若关于的方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示.若,且,则_____________12.若,是夹角为的两个单位向量,则,的夹角为________.13.请写出一个最小正周期为,且在上单调递增的函数__________14.若在内无零点,则的取值范围为___________.15.已知幂函数在上为减函数,则实数_______16.设集合,,若,则实数的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式:(1);(2)18.已知函数,若函数的定义域为集合,则当时,求函数的值域.19.指数函数(且)和对数函数(且)互为反函数,已知函数,其反函数为(1)若函数在区间上单调递减,求实数的取值范围;(2)是否存在实数使得对任意,关于的方程在区间上总有三个不等根,,?若存在,求出实数及的取值范围;若不存在,请说明理由20.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?21.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,化为指数式即可得出.【详解】令,则,∴,即的估算值为.故选:C.2、A【解析】说明由可得得到,通过特例说明无法从得到,从而得到是的充分不必要条件.【详解】由,可得,由,即,,解得或.于是,由能推出,反之不成立.所以是充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.3、A【解析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果.详解:因为,所以,所以,因为,所以,所以,所以,所以答案是,故选A.点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果.4、C【解析】由函数图象求出、、和的值,写出的解析式,再根据图象平移得出函数解析式【详解】由函数图象知,,,解得,所以,所以函数;因为,所以,;解得,;又,所以;所以;将函数的图象向右平移个单位长度后,得的图象,即故选:5、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B6、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B7、A【解析】根据函数的图象,求出A,和的值,得到函数的解析式,即可得到结论【详解】由图象知,,则,所以,即,由五点对应法,得,即,即,故选A【点睛】本题主要考查了由三角函数的图象求解函数的解析式,其中解答中根据条件求出A,和的值是解决本题的关键,着重考查了运算与求解能力,属于基础题.8、A【解析】利用同角三角函数的基本关系化简函数f(x)的解析式为﹣(sinx﹣1)2+2,根据二次函数的性质,求得函数f(x)的最大值【详解】∵函数f(x)=cos2x+2sinx=1﹣sin2x+2sinx=﹣(sinx﹣1)2+2,∴sinx≤1,∴当sinx=1时,函数f(x)取得最大值为2,故选A【点睛】本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于中档题9、A【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确.【详解】由题意,函数为单调递增函数,因为点,,在的图像上,且,不妨设,可得,则,因为,可得,又由因为,,,,所以,所以所以,所以一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得,根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确.故选:A.10、A【解析】根据图象可得:,,,.,则.令,,求函数的值域,即可得出结果.【详解】画出函数的大致图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,,则.令,,而函数在单调递增,所以,则.故选:A.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.12、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.13、或(不唯一).【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).14、【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围.【详解】因为函数在内无零点,所以,所以;由,得,所以或,由,得;由,得;由,得,因为函数在内无零点,所以或或,又因为,所以取值范围为.故答案为:.15、-1【解析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【点睛】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关16、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-37(2)0【解析】(1)利用对数的性质以及有理数指数幂的性质,算出结果;(2)利用诱导公式算出三角函数值试题解析:(1)原式;(2),,所以原式18、【解析】先求函数的定义域集合,再求函数的值域【详解】由,得,所以函数的值域为【点睛】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件19、(1);(2)存在,,.【解析】(1)利用复合函数的单调性及函数的定义域可得,即得;(2)由题可得,令,则可得时,方程有两个不等的实数根,当时方程有且仅有一个根在区间内或1,进而可得对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,再利用二次函数的性质可得,即得.【小问1详解】∵函数,其反函数为,∴,∴,又函数在区间上单调递减,又∵在定义域上单调递增,∴函数在区间上单调递减,∴,解得;【小问2详解】∵,∴,∵,,令,则时,方程有两个不等的实数根,不妨设为,则,即,∴,即方程有两个不等的实数根,且两根积为1,当时方程有且仅有一个根在区间内或1,由,可得,令,则原题目等价于对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,则必有,∴,解得,此时,则其根在区间内,所以,综上,存在,使得对任意,关于的方程在区间上总有三个不等根,,,的取值范围为.【点睛】关键点点睛:本题第二问关键是把问题转化为对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,进而利用二次函数性质可求.20、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(2)根据扇形的面积公式,结合基本不等式即可得到结论【详解】(1)设弧长为l,弓形面积为S弓,则α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论