上海市十一校2024届高一上数学期末统考试题含解析_第1页
上海市十一校2024届高一上数学期末统考试题含解析_第2页
上海市十一校2024届高一上数学期末统考试题含解析_第3页
上海市十一校2024届高一上数学期末统考试题含解析_第4页
上海市十一校2024届高一上数学期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市十一校2024届高一上数学期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知集合,则()A. B.C. D.2.已知=(4,5),=(-3,4),则-4的坐标是()A(16,11) B.(-16,-11)C.(-16,11) D.(16,-11)3.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.4.已知两点,点在直线上,则的最小值为()A. B.9C. D.105.,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且8.已知幂函数f(x)=xa的图象经过点P(2,),则函数y=f(x2)﹣2f(x)的最小值等于()A. B.C.1 D.﹣19.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.610.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,使得∠B′AC=60°.那么这个二面角大小是()A.30° B.60°C.90° D.120°二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数有4个零点,则实数a的取值范围为___________.12.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.13.已知函数的图象如图,则________14.已知函数是偶函数,则实数的值是__________15.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图所示,四棱锥的底面是边长为1的菱形,,E是CD中点,PA底面ABCD,(I)证明:平面PBE平面PAB;(II)求二面角A—BE—P和的大小17.设是两个不共线的非零向量.(1)若求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线.18.化简或求下列各式的值(1);(2)(lg5)2+lg5•lg20+19.某工厂有甲,乙两条相互独立的产品生产线,单位时间内甲,乙两条生产线的产量之比为4:1.现采用分层抽样的方法从甲,乙两条生产线得到一个容量为100的样本,其部分统计数据如下表所示(单位:件).一等品二等品甲生产线76a乙生产线b2(1)写出a,b的值;(2)从上述样本的所有二等品中任取2件,求至少有1件为甲生产线产品的概率;(3)以抽样结果的频率估计概率,现分别从甲,乙两条产品生产线随机抽取10件产品记P1表示从甲生产线随机抽取的10件产品中恰好有5件一等品的概率,P2表示从乙生产线随机抽取的10件产品中恰好有5件一等品的概率,试比较P1和P20.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.21.某运营商为满足用户手机上网的需求,推出甲、乙两种流量包月套餐,两种套餐应付的费用(单位:元)和使用的上网流量(单位:GB)之间的关系如图所示,其中AB,DE都与横轴平行,BC与EF相互平行(1)分别求套餐甲、乙的费用(元)与上网流量x(GB)的函数关系式f(x)和g(x);(2)根据题中信息,用户怎样选择流量包月套餐,能使自己应付的费用更少?

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由交集的定义求解即可【详解】,由题意,作数轴如图:故,故选:D.2、D【解析】直接利用向量的坐标运算求解.【详解】-4.故选:D3、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行4、C【解析】根据给定条件求出B关于直线的对称点坐标,再利用两点间距离公式计算作答.【详解】依题意,若关于直线的对称点,∴,解得,∴,连接交直线于点,连接,如图,在直线上任取点C,连接,显然,直线垂直平分线段,则有,当且仅当点与重合时取等号,∴,故的最小值为.故选:C5、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B6、A【解析】利用充分必要条件的定义判断.【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A7、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题8、D【解析】先由已知条件求得,再利用配方法求二次函数的最值即可得解.【详解】解:已知幂函数f(x)=xa的图象经过点P(2,),则,即,所以,所以,所以y=f(x2)﹣2f(x),当且仅当,即时取等号,即函数y=f(x2)﹣2f(x)的最小值等于,故选:D.【点睛】本题考查了幂函数解析式的求法,重点考查了二次函数求最值问题,属基础题.9、A【解析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A10、C【解析】根据折的过程中不变的角的大小、结合二面角的定义进行判断即可.【详解】因为AD是等腰直角△ABC斜边BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等边三角形,因此,在中.故选:C【点睛】本题考查了二面角的判断,考查了数学运算能力,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】将函数转化为方程,作出的图像,结合图像分析即可.【详解】令得,作出的函数图像,如图,因为有4个零点,所以直线与的图像有4个交点,所以.故答案为:12、【解析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.13、8【解析】由图像可得:过点和,代入解得a、b【详解】由图像可得:过点和,则有:,解得∴故答案为:814、1【解析】函数是偶函数,,即,解得,故答案为.【方法点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性15、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(I)同解析(II)二面角的大小为【解析】解:解法一(I)如图所示,连结由是菱形且知,是等边三角形.因为E是CD的中点,所以又所以又因为PA平面ABCD,平面ABCD,所以而因此平面PAB.又平面PBE,所以平面PBE平面PAB.(II)由(I)知,平面PAB,平面PAB,所以又所以是二面角的平面角在中,故二面角的大小为解法二:如图所示,以A为原点,建立空间直角坐标系则相关各点的坐标分别是:(I)因为平面PAB的一个法向量是所以和共线.从而平面PAB.又因为平面PBE,所以平面PBE平面PAB.(II)易知设是平面PBE的一个法向量,则由得所以故可取而平面ABE的一个法向量是于是,故二面角的大小为17、(1)证明见解析;(2).【解析】(1)利用向量共线定理证明向量与共线即可;(2)利用向量共线定理即可求出【详解】(1)∵,∴//,又有公共点B∴A、B、D三点共线(2)设,化为,∴,解得k=±118、(1);(2)2【解析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可【详解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【点睛】本题主要考查分数指数幂和对数的运算,考查对数的换底公式.意在考查学生对这些知识的理解掌握水平和计算能力.19、(1)a=4,b=18;(2)1415(3)P1【解析】(1)根据题意列出方程组76+a+b+2=10076+a=4b+2,从而求出a,(2记C为“至少有1件为甲生产线产品”这一事件,首先列出从6件二等品中任取2件的所有结果,然后再找出事件C所包含是基本事件,从而利用古典概型的概率公式即可求出答案.(3)根据样本中甲,乙产品一等品的概率,同时结合二项分布即可比较大小.【小问1详解】由题意,知76+a+b+2=10076+a=4b+2,解得【小问2详解】记样本中甲生产线的4件二等品为A1,A2,从6件二等品中任取2件,所有可能的结果有15个,它们是:A1A3记C为“至少有1件为甲生产线产品”这一事件,则C中的结果有1个,它是B1所以PC【小问3详解】P120、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点时,,,所以当时,与的图象在第一象限内有一个交点.所以与的图象有两个交点.所以的取值范围是.21、(1)f(x)=30, (2)答案见解析【解析】(1)利用函数的图像结合分段函数的性质求出解析式;(2)由f(x)=g(x),得x=30,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论