版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市杨浦区2024届八上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)2.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是环,方差分别是,,,,你认为谁的成绩更稳定()A.甲 B.乙 C.丙 D.丁3.下列图形中,对称轴条数最多的图形是()A. B. C. D.4.下列各式不能分解因式的是()A. B. C. D.5.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.106.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为(
)A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)7.如图,是数轴上的四个点,这四个点中最适合表示的是()A.点 B.点 C.点 D.点8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°9.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=7,点E在边BC上,并且CE=2,点F为边AC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.0.5 B.1 C.2 D.2.510.将长度为5cm的线段向上平移10cm所得线段长度是()A.10cm B.5cm C.0cm D.无法确定11.如图,数轴上的点A表示的数是-2,点B表示的数是1,于点B,且,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A. B. C. D.212.在平面直角坐标系中,若将点的横坐标乘以,纵坐标不变,可得到点,则点和点的关系是()A.关于轴对称B.关于轴对称C.将点向轴负方向平移一个单位得到点D.将点向轴负方向平移一个单位得到点二、填空题(每题4分,共24分)13.等腰三角形ABC的顶角为120°,腰长为20,则底边上的高AD的长为_____.14.等腰三角形的一个内角是,则它的顶角度数是_______________.15.如图所示,,,,点在线段上.若,,则______.16.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等______.17.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是______.18.如图,等腰三角形ABC的底边BC长为8cm,面积是48,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为___________.三、解答题(共78分)19.(8分)分解因式:20.(8分)已知的三个顶点坐标分别是,,.(1)请在所给的平面直角坐标系中画出.(2)求的面积.21.(8分)甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?22.(10分)先化简,再求值:(1),其中;(2),其中.23.(10分)先将化简,然后请自选一个你喜欢的x值代入求值.24.(10分)(1)分解因式:;(2)用简便方法计算:.25.(12分)按要求完成下列各题(1)计算:(2)因式分解:(3)解方程:(4)先化简,再求值:,其中.26.如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC.(1)求证:△ABC≌△DEB;(1)连结AD、AE、CE,如图1.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、D【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大可得答案.【详解】解:∵0.35<0.4<0.45<0.55,∴S丁2<S丙2<S甲2<S乙2,丁的成绩稳定,
故选:D.【点睛】此题主要考查了方差,关键是掌握方差的意义,方差越小成绩越稳定.3、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.4、C【解析】选项A.=2x(x-2).选项B.=(x+)2.选项C.,不能分.选项D.=(1-m)(1+m).故选C.5、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.6、D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.7、A【分析】根据进行判断即可.【详解】∵∴∴点最适合表示故答案为:A.【点睛】本题考查了用数轴上的点表示无理数的问题,掌握要表示的数的大小范围是解题的关键.8、C【分析】先根据平行线的性质得出的度数,进而可得出结论.【详解】解:,,故选:【点睛】此题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.9、A【分析】如图所示:当PE⊥AB.由翻折的性质和直角三角形的性质即可得到即可.【详解】如图所示:当PE⊥AB,点P到边AB距离的值最小.由翻折的性质可知:PE=EC=1.∵DE⊥AB,∴∠PDB=90°.∵∠B=30°,∴DE=BE=(7﹣1)=1.2,∴点P到边AB距离的最小值是1.2﹣1=0.2.故选:A.【点睛】此题参考翻折变换(折叠问题),直角三角形的性质,熟练掌握折叠的性质是解题的关键.10、B【详解】解:平移不改变图形的大小和形状.故线段长度不变,仍为5cm.故选:B.11、C【分析】根据勾股定理,可得AC的值,从而得到AD的长,进而可得到答案.【详解】∵数轴上的点A表示的数是-2,点B表示的数是1,∴AB=3,∵于点B,且,∴,∵以点A为圆心,AC为半径画弧交数轴于点D,∴AD=AC=,∴点D表示的数为:,故选C.【点睛】本题主要考查数轴上点表示的实数与勾股定理,根据勾股定理,求出AC的长,是解题的关键.12、B【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点是(-x,y),据此解答本题即可.【详解】解:∵在直角坐标系中的横坐标乘以,纵坐标不变,∴的坐标是(-1,2),∴和点关于y轴对称;故选:B.【点睛】本题考查的是平面直角坐标系中关于坐标轴对称的两点坐标之间的关系:关于纵坐标对称,则纵坐标不变,横坐标互为相反数.二、填空题(每题4分,共24分)13、1【分析】画出图形,结合条件可求得该三角形的底角为30°,再结合直角三角形的性质可求得底边上的高.【详解】解:如图所示:∵∠BAC=120°,AB=AC,∴,∴Rt△ABD中,,即底边上的高为1,故答案为:1.【点睛】本题考查了含30度角的直角三角形的性质:30度角所对的直角边是斜边的一半.14、20度或80度【分析】先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【详解】当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°−80°×2=20°.故答案为:80°或20°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15、55°【分析】先证明△ABD≌△ACE(SAS);再利用全等三角形的性质:对应角相等,求得∠2=∠ABE;最后根据三角形内角与外角的性质即可求出答案.【详解】∵,∴∠1+∠CAD=∠CAE+∠CAD,
∴∠1=∠CAE;在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);
∴∠2=∠ABE;
∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,
∴∠3=55°.
故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.16、1或6【解析】试题解析:根据题意画出图形,如图所示,如图1所示,AB=1,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=1;如图2所示,AB=1,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或1.17、1【分析】先求出数据的平均数,再根据平均数公式与方差公式即可求解.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,
∴x1+x2+x3+x4+x5=2×5=10,
∴,
∵数据x1,x2,x3,x4,x5的方差是1,
∴[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2+(x5-2)2]=1,
∴[(3x1-2-4)2+(3x2-2-4)2+(3x3-2-4)2+(3x4-2-4)2+(3x5-2-4)2]=[1(x1-2)2+1(x2-2)2+1(x3-2)2+1(x4-2)2+1(x5-2)2]=1×1=1,
故答案为:1.【点睛】本题考查了平均数的计算公式和方差的定义,熟练运用公式是本题的关键.18、16cm(没单位扣1分).【分析】连接AD交EF于点,连接AM,由线段垂直平分线的性质可知AM=MB,则,故此当A、M、D在一条直线上时,有最小值,然后依据三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为48可求得AD的长;【详解】连接AD交EF于点,连接AM,∵△ABC是等腰三角形,点D是BC边的中点,∴,∴,∴,∵EF是线段AB的垂直平分线,∴AM=MB,∴,∴当点M位于时,有最小值,最小值为6,∴△BDM的周长的最小值为;故答案是16cm.【点睛】本题主要考查了三角形综合,结合垂直平分线的性质计算是关键.三、解答题(共78分)19、【分析】根据提取公因式法和公式法即可因式分解.【详解】==【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.20、(1)详见解析;(2)16【分析】(1)在坐标系中标出A,B,C三点,依次连接即可;(2)S矩形BDEF-,求出即可.【详解】(1)在坐标系中标出A,B,C三点,依次连接,如图所示;(2)由图可知D(-4,-4),E(3,-4),F(3,1),S矩形BDEF-.【点睛】本题是对坐标系知识的考查,熟练掌握坐标系内的点和三角形面积公式是解决本题的关键.21、甲每小时做18个,乙每小时做12个零件.【分析】本题的等量关系为:甲每小时做的零件数量﹣乙每小时做的零件数量=6;甲做90个所用的时间=乙做60个所用的时间.由此可得出方程组求解.【详解】解:设甲每小时做x个零件,乙每小时做y个零件.由题意得:解得:,经检验x=18,y=12是原方程组的解.答:甲每小时做18个,乙每小时做12个零件.考点:二元一次方程组的应用;分式方程的应用.22、(1),;(2),【分析】(1)先运用完全平方公式与平方差公式展开,化简后再代入数据求值;(2)先将括号内通分计算,再将除法变乘法,约分化简后代入数据求值.【详解】(1)原式===当时,原式=(2)原式====当时,原式=【点睛】本题考查了整式与分式的化简求值,熟练掌握整式乘法公式,以及分式的混合运算是解题的关键.23、,当时,原式=1【分析】将括号中两项通分并利用同分母分式的减法法则计算,化除法为乘法运算,约分得到最简结果,取一个使分式分母和除式不为0的数,如代入计算即可得到结果.【详解】,取,原式=10+2=1.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24、(1);(2)1.【分析】(1)先用完全平方公式展开,整理后再用完全平方公式进行因式分解即可;(2)把化成的形式,再运用平方差公式计算即可.【详解】(1)===;(2)===1.【点睛】此题主要考查了因式分解-公式法以及平方差公式的应用,熟练掌握因式分解的方法是解本题的关键.25、(1);(2);(3)1.5;(4);.【分析】(1)先算乘方和乘法,最后合并同类项即可;(2)先提取公因式,然后再运用公式法分解因式即可;(3)先通过去分母化成整式方程,然后再解整式方程,最后检验即可;(4)先运用分式的运算法则化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5年级下册第26课教学课件教学
- 人教版九年级化学第二单元我们周围的空气实验活动1氧气的实验室制取与性质课件
- 2024年度钢管市场调查与竞争对手分析承包合同
- 技术授权合同范本 2篇
- 小学一年级家长培训
- 淋巴瘤主要护理问题
- 《物料管理》课件
- 2024年度技术服务合同:云计算服务的提供与维护3篇
- 仁爱版七年级上册英语全册教案(供参考)
- 2024版医疗信息技术服务合同
- 水稻碳足迹评价技术指南
- 工会跳棋活动方案
- 新高考英语读后续写技巧与训练:助人类20篇
- 规范开展学术活动管理制度
- 建设工程监理职业生涯规划
- 冻酸奶市场洞察报告
- 胎儿肛门闭锁个案护理
- 成都YC公司创业计划书
- 2022年全国统一高考化学试卷和答案解析(全国甲卷)
- 企业退税申请报告范文
- 平行结转分步法
评论
0/150
提交评论