高考数学分项版解析 专题09 立体几何 理-天津版高三数学试题_第1页
高考数学分项版解析 专题09 立体几何 理-天津版高三数学试题_第2页
高考数学分项版解析 专题09 立体几何 理-天津版高三数学试题_第3页
高考数学分项版解析 专题09 立体几何 理-天津版高三数学试题_第4页
高考数学分项版解析 专题09 立体几何 理-天津版高三数学试题_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九章立体几何一.基础题组1.【2005天津,理4】设SKIPIF1<0、SKIPIF1<0、SKIPIF1<0为平面,为SKIPIF1<0、SKIPIF1<0、SKIPIF1<0直线,则SKIPIF1<0的一个充分条件是A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<0【答案】D【解析】A选项:缺少条件SKIPIF1<0;B选项:当SKIPIF1<0时,SKIPIF1<0;C选项:当SKIPIF1<0两两垂直(看着你现在所在房间的天花板上的墙角),SKIPIF1<0时,SKIPIF1<0;D选项:同时垂直于同一条直线的两个平面平行。本选项为真命题。本题答案选D2.【2005天津,理12】若图,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0且SKIPIF1<0则异面直线PB与AC所成角的正切值等于__________。【答案】SKIPIF1<03.【2006天津,理6】设SKIPIF1<0、SKIPIF1<0是两条不同的直线,SKIPIF1<0、SKIPIF1<0是两个不同的平面.考查下列命题,其中正确的命题是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】设SKIPIF1<0、SKIPIF1<0是两条不同的直线,SKIPIF1<0、SKIPIF1<0是两个不同的平面。下列命题中正确的命题是SKIPIF1<0,选B.4.【2006天津,理13】如图,在正三棱柱SKIPIF1<0中,SKIPIF1<0.若二面角SKIPIF1<0的大小为SKIPIF1<0,则点SKIPIF1<0到平面SKIPIF1<0的距离为______________.【答案】SKIPIF1<05.【2007天津,理6】设SKIPIF1<0为两条直线,SKIPIF1<0为两个平面.下列四个命题中,正确的命题是 () A.若SKIPIF1<0与SKIPIF1<0所成的角相等,则SKIPIF1<0 B.若SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,则SKIPIF1<0 C.若SKIPIF1<0则SKIPIF1<0 D.若SKIPIF1<0则SKIPIF1<0【答案】D【解析】 对于A当SKIPIF1<0与SKIPIF1<0均成SKIPIF1<0时就不一定;对于B只需找个SKIPIF1<0SKIPIF1<0,且SKIPIF1<0即可满足题设但SKIPIF1<0不一定平行;对于C可参考直三棱柱模型排除,故选D6.【2007天津,理12】一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为SKIPIF1<0则此球的表面积为SKIPIF1<0.【答案】SKIPIF1<0【解析】 长方体外接球直径长等于长方体体对角线长,即SKIPIF1<0,由SKIPIF1<07.【2008天津,理4】设SKIPIF1<0是两条直线,SKIPIF1<0是两个平面,则SKIPIF1<0的一个充分条件是(A)SKIPIF1<0(B)SKIPIF1<0(C)SKIPIF1<0(D)SKIPIF1<0【答案】C【解析】A、B、D直线SKIPIF1<0可能平行,选C.8.【2008天津,理12】一个正方体的各定点均在同一球的球面上,若该球的体积为SKIPIF1<0,则该正方体的表面积为.【答案】24【解析】由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,表面积为SKIPIF1<0.9.【2009天津,理12】如图是一个几何体的三视图.若它的体积是SKIPIF1<0,则a=_________.【答案】SKIPIF1<0【解析】由三视图可知几何体是一个三棱柱,底面三角形的一边长为2,其边上的高为a,依题SKIPIF1<0.10.【2010天津,理12】一个几何体的三视图如图所示,则这个几何体的体积为__________.【答案】SKIPIF1<0【解析】解析:几何体下方是一个棱长为1,2,1的长方体,上方是一个高为1的正四棱锥,底面四边形的边长为2,V=1×2×1+SKIPIF1<0×2×2×1=SKIPIF1<0.11.【2011天津,理10】一个几何体的三视图如图所示(单位:SKIPIF1<0),则这个几何体的体积为__________SKIPIF1<0.【答案】SKIPIF1<0【解析】该几何体为一个棱柱与一个圆锥的组合体,SKIPIF1<0.12.【2012天津,理10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________m3.【答案】18+9π【解析】由几何体的三视图可知该几何体的顶部是长、宽、高分别为6m,3m,1m的长方体,底部为两个直径为3m的球.∴该几何体的体积为:V=6×3×1+2×SKIPIF1<0=18+9π(m3).13.【2014天津,理10】已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为_______SKIPIF1<0.【答案】SKIPIF1<0.考点:1.立体几何三视图;2.几何体体积的计算.14.【2015高考天津,理17】(本小题满分13分)如图,在四棱柱SKIPIF1<0中,侧棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且点M和N分别为SKIPIF1<0的中点.(I)求证:SKIPIF1<0平面SKIPIF1<0;(II)求二面角SKIPIF1<0的正弦值;(III)设SKIPIF1<0为棱SKIPIF1<0上的点,若直线SKIPIF1<0和平面SKIPIF1<0所成角的正弦值为SKIPIF1<0,求线段SKIPIF1<0的长【答案】(I)见解析;(II)SKIPIF1<0;(=3\*ROMANIII)SKIPIF1<0.【解析】如图,以SKIPIF1<0为原点建立空间直角坐标系,依题意可得SKIPIF1<0,,又因为SKIPIF1<0分别为SKIPIF1<0和SKIPIF1<0的中点,得SKIPIF1<0.(I)证明:依题意,可得SKIPIF1<0为平面SKIPIF1<0的一个法向量,SKIPIF1<0,由此可得,SKIPIF1<0,又因为直线SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0(II)SKIPIF1<0,设SKIPIF1<0为平面SKIPIF1<0的法向量,则SKIPIF1<0,即SKIPIF1<0,不妨设SKIPIF1<0,可得SKIPIF1<0,设SKIPIF1<0为平面SKIPIF1<0的一个法向量,则SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,不妨设SKIPIF1<0,可得SKIPIF1<0因此有SKIPIF1<0,于是SKIPIF1<0,所以二面角SKIPIF1<0的正弦值为SKIPIF1<0.【考点定位】直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.15.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.(第11题图)【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积SKIPIF1<0.故答案为2.【考点】三视图、几何体的体积【名师点睛】①解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.②三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.二.能力题组1.【2005天津,理19】如图,在斜三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,侧面SKIPIF1<0与底面ABC所成的二面角为120SKIPIF1<0,E、F分别是棱SKIPIF1<0、SKIPIF1<0的中点。(Ⅰ)求SKIPIF1<0与底面ABC所成的角;(Ⅱ)证明EA∥平面SKIPIF1<0;(Ⅲ)求经过SKIPIF1<0、A、B、C四点的球的体积。【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)详见解析;(Ⅲ)SKIPIF1<0【解析】(I)解:过SKIPIF1<0作平面SKIPIF1<0平面SKIPIF1<0,垂足为SKIPIF1<0。连接SKIPIF1<0,并延长SKIPIF1<0交于SKIPIF1<0,连接SKIPIF1<0,于是SKIPIF1<0为SKIPIF1<0与底面SKIPIF1<0所成的角。因为SKIPIF1<0,所以SKIPIF1<0为的SKIPIF1<0平分线又因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0且为SKIPIF1<0的中点因此,由三垂线定理SKIPIF1<0因为SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,于是为SKIPIF1<0二面角SKIPIF1<0的平面角,即SKIPIF1<0由于四边形SKIPIF1<0为平行四边形,得SKIPIF1<0所以,SKIPIF1<0与底面SKIPIF1<0所成的角度为SKIPIF1<0(II)证明:设SKIPIF1<0与SKIPIF1<0的交点为SKIPIF1<0,则点P为EG的中点,连结PF。在平行四边形SKIPIF1<0中,因为F是SKIPIF1<0的中点,所以SKIPIF1<0而EPSKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<02.【2006天津,理19】如图,在五面体SKIPIF1<0中,点SKIPIF1<0是矩形SKIPIF1<0的对角线的交点,面SKIPIF1<0是等边三角形,棱SKIPIF1<0.(1)证明SKIPIF1<0//平面SKIPIF1<0;(2)设SKIPIF1<0,证明SKIPIF1<0平面SKIPIF1<0.【答案】(I)详见解析,(II)详见解析.【解析】(I)证明:取CD中点M,连接OM.EM.

在矩形ABCD中,

则连接EM,于是

四边形EFOM为平行四边形.

∴FO∥EM.

又因为FO不在平面CDE,且EM⊂平面CDE,

∴FO∥平面CDE.

3.【2007天津,理19】如图,在四棱锥SKIPIF1<0中,SKIPIF1<0底面SKIPIF1<0SKIPIF1<0SKIPIF1<0是SKIPIF1<0的中点. (I)证明:SKIPIF1<0; (II)证明:SKIPIF1<0平面SKIPIF1<0; (III)求二面角SKIPIF1<0的大小.【答案】(I)证明(略)(II)证明证明(略)(III)SKIPIF1<0或SKIPIF1<0【解析】(I)证明:在四棱锥SKIPIF1<0中,因SKIPIF1<0底面SKIPIF1<0平面SKIPIF1<0故SKIPIF1<0. SKIPIF1<0平面SKIPIF1<0. 而SKIPIF1<0平面SKIPIF1<0.(II)证明:由SKIPIF1<0可得SKIPIF1<0. SKIPIF1<0是SKIPIF1<0的中点,SKIPIF1<0. 由(I)知,SKIPIF1<0且SKIPIF1<0所以SKIPIF1<0平面SKIPIF1<0. 而SKIPIF1<0平面SKIPIF1<0. SKIPIF1<0底面SKIPIF1<0在底面SKIPIF1<0内射影是SKIPIF1<0. 又SKIPIF1<0综上得SKIPIF1<0平面SKIPIF1<0.(III)解法一:过点SKIPIF1<0作SKIPIF1<0垂足为SKIPIF1<0连结SKIPIF1<0.由(II)知,SKIPIF1<0平面SKIPIF1<0在平面SKIPIF1<0内的射影是SKIPIF1<0则SKIPIF1<0. 因此SKIPIF1<0是二面角SKIPIF1<0的平面角. 由已知,得SKIPIF1<0.设SKIPIF1<0可得 SKIPIF1<0 在SKIPIF1<0中,SKIPIF1<0.则 SKIPIF1<0 在SKIPIF1<0中,SKIPIF1<0 所以二面角SKIPIF1<0的大小是SKIPIF1<0解法二:由题设SKIPIF1<0底面SKIPIF1<0平面SKIPIF1<0则平面SKIPIF1<0平面SKIPIF1<0交线为SKIPIF1<0 过点SKIPIF1<0作SKIPIF1<0垂足为SKIPIF1<0故SKIPIF1<0平面SKIPIF1<0过点SKIPIF1<0作SKIPIF1<0垂足为SKIPIF1<0连结SKIPIF1<0故SKIPIF1<0因此SKIPIF1<0是二面角SKIPIF1<0的平面角. 由已知,可得SKIPIF1<0.设SKIPIF1<0可得 SKIPIF1<0APEBCDMF SKIPIF1<0∽SKIPIF1<0APEBCDMF 于是,SKIPIF1<0 在SKIPIF1<0中,SKIPIF1<0 所以二面角SKIPIF1<0的大小是SKIPIF1<04.【2008天津,理19】如图,在四棱锥SKIPIF1<0中,底面SKIPIF1<0是矩形.已知SKIPIF1<0.(Ⅰ)证明SKIPIF1<0平面SKIPIF1<0;(Ⅱ)求异面直线SKIPIF1<0与SKIPIF1<0所成的角的大小;(Ⅲ)求二面角SKIPIF1<0的大小.【答案】(I)详见解析,(II)SKIPIF1<0,(Ⅲ)SKIPIF1<0.【解析】解:(Ⅰ)证明:在SKIPIF1<0中,由题设SKIPIF1<0可得SKIPIF1<0于是SKIPIF1<0.在矩形SKIPIF1<0中,SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(Ⅱ)证明:由题设,SKIPIF1<0,所以SKIPIF1<0(或其补角)是异面直线SKIPIF1<0与SKIPIF1<0所成的角.在SKIPIF1<0中,由余弦定理得由(Ⅰ)知SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,因而SKIPIF1<0,于是SKIPIF1<0是直角三角形,故SKIPIF1<0所以异面直线SKIPIF1<0与SKIPIF1<0所成的角的大小为SKIPIF1<0.(Ⅲ)解:过点P做SKIPIF1<0于H,过点H做SKIPIF1<0于E,连结PE因为SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,因而SKIPIF1<0平面SKIPIF1<0,故HE为PE再平面ABCD内的射影.由三垂线定理可知,SKIPIF1<0,从而SKIPIF1<0是二面角SKIPIF1<0的平面角。由题设可得,5.【2009天津,理19】如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=SKIPIF1<0AD.(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求二面角A-CD-E的余弦值.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)详见解析;(Ⅲ)SKIPIF1<0【解析】(2)证明:因为DC=DE且M为CE的中点,所以DM⊥CE.连结MP,则MP⊥CE.又MP∩DM=M,故CE⊥平面AMD.而CESKIPIF1<0平面CDE,所以平面AMD⊥平面CDE.(3)设Q为CD的中点,连结PQ,EQ.因为CE=DE,所以EQ⊥CD.因为PC=PD,所以PQ⊥CD,故∠EQP为二面角A-CD-E的平面角.由(1)可得,EP⊥PQ,SKIPIF1<0,SKIPIF1<0.于是在Rt△EPQ中,SKIPIF1<0.所以二面角A-CD-E的余弦值为SKIPIF1<0.解法二:如图所示,建立空间直角坐标系,点A为坐标原点.设AB=1,依题意得B(1,0,0),C(1,1,0),D(0,2,0),E(0,1,1),F(0,0,1),M(SKIPIF1<0,1,SKIPIF1<0).(1)SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0.所以异面直线BF与DE所成的角的大小为60°.(2)证明:由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0.因此,CE⊥AM,CE⊥AD.又AM∩AD=A,故CE⊥平面AMD.而CESKIPIF1<0平面CDE,所以平面AMD⊥平面CDE.(3)设平面CDE的法向量为u=(x,y,z),则SKIPIF1<0于是SKIPIF1<0令x=1,可得u=(1,1,1).又由题设,平面ACD的一个法向量为v=(0,0,1).所以SKIPIF1<0.因为二面角A-CD-E为锐角,所以其余弦值为SKIPIF1<0.6.【2010天津,理19】如图,在长方体ABCD—A1B1C1D1中,E,F分别是棱BC,CC1上的点,CF=AB=2CE,AB∶AD∶AA1(1)求异面直线EF与A1D所成角的余弦值;(2)证明AF⊥平面A1ED;(3)求二面角A1EDF的正弦值.【答案】(1)SKIPIF1<0,(2)详见解析,(3)SKIPIF1<0.【解析】解法一:如图所示,建立空间直角坐标系,点A为坐标原点.设AB=1,依题意得D(0,2,0),F(1,2,1),A1(0,0,4),E(1,SKIPIF1<0,0).(1)解:易得SKIPIF1<0=(0,SKIPIF1<0,1),SKIPIF1<0=(0,2,-4).于是cos〈SKIPIF1<0,SKIPIF1<0〉=SKIPIF1<0所以异面直线EF与A1D所成角的余弦值为SKIPIF1<0.(2)证明:易知SKIPIF1<0=(1,2,1),SKIPIF1<0=(-1,-SKIPIF1<0,4),SKIPIF1<0=(-1,SKIPIF1<0,0),于是SKIPIF1<0·SKIPIF1<0=0,SKIPIF1<0·SKIPIF1<0=0.因此,AF⊥EA1,AF⊥ED.又EA1∩ED=E,所以AF⊥平面A1ED.(3)解:设平面EFD的法向量u=(x,y,z),则SKIPIF1<0即SKIPIF1<0不妨令x=1,可得u=(1,2,-1).由(2)可知,SKIPIF1<0为平面A1ED的一个法向量.于是cos〈u,SKIPIF1<0〉=SKIPIF1<0从而sin〈u,SKIPIF1<0〉=SKIPIF1<0.所以二面角A1-ED-F的正弦值为SKIPIF1<0.(2)证明:连结AC,设AC与DE交于点N.因为SKIPIF1<0,所以Rt△DCE∽Rt△CBA.从而∠CDE=∠BCA.又由于∠CDE+∠CED=90°,所以∠BCA+∠CED=90°.故AC⊥DE.又因为CC1⊥DE且CC1∩AC=C,所以DE⊥平面ACF.从而AF⊥DE.连结BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1因为DE∩A1D=D,所以AF⊥平面A1ED.(3)解:连结A1N,FN.由(2)可知DE⊥平面ACF.又NF平面ACF,A1N平面ACF,所以DE⊥NF,DE⊥A1N.故∠A1NF为二面角A1-ED-F的平面角.易知Rt△CNE∽Rt△CBA,所以SKIPIF1<0.又AC=SKIPIF1<0,所以CN=SKIPIF1<0.在Rt△CNF中,NF=SKIPIF1<0.在Rt△A1AN中,A1N=SKIPIF1<0.连结A1C1,A1F.在Rt△A1C1F中,A1F=SKIPIF1<0.在△A1NF中,cos∠A1NF=SKIPIF1<0.所以sin∠A1NF=SKIPIF1<0.所以二面角A1EDF的正弦值为SKIPIF1<0.7.【2015高考天津,理10】一个几何体的三视图如图所示(单位:SKIPIF1<0),则该几何体的体积为SKIPIF1<0.【答案】SKIPIF1<0【解析】由三视图可知,该几何体是中间为一个底面半径为SKIPIF1<0,高为SKIPIF1<0的圆柱,两端是底面半径为SKIPIF1<0,高为SKIPIF1<0的圆锥,所以该几何体的体积SKIPIF1<0.【考点定位】三视图与旋转体体积公式.8.三.拔高题组1.【2011天津,理17】如图,在三棱柱SKIPIF1<0中,SKIPIF1<0是正方形SKIPIF1<0的中心,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0(Ⅰ)求异面直线AC与A1B1所成角的余弦值;(Ⅱ)求二面角SKIPIF1<0的正弦值;(Ⅲ)设SKIPIF1<0为棱SKIPIF1<0的中点,点SKIPIF1<0在平面SKIPIF1<0内,且SKIPIF1<0平面SKIPIF1<0,求线段SKIPIF1<0的长.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0(Ⅲ)SKIPIF1<0【解析】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得SKIPIF1<0SKIPIF1<0(I)解:易得SKIPIF1<0,于是SKIPIF1<0所以异面直线AC与A1B1所成角的余弦值为SKIPIF1<0(II)解:易知SKIPIF1<0设平面AA1C1的法向量SKIPIF1<0,则SKIPIF1<0即SKIPIF1<0不妨令SKIPIF1<0可得SKIPIF1<0,同样地,设平面A1B1C1的法向量SKIPIF1<0,则SKIPIF1<0即SKIPIF1<0不妨令SKIPIF1<0,可得SKIPIF1<0于是SKIPIF1<0从而SKIPIF1<0解得SKIPIF1<0故SKIPIF1<0因此SKIPIF1<0,所以线段BM的长为SKIPIF1<0方法二:(I)解:由于AC//A1C1,故SKIPIF1<0是异面直线AC与A1B1所成的角.因为SKIPIF1<0平面AA1B1B,又H为正方形AA1B1B的中心,SKIPIF1<0可得SKIPIF1<0因此SKIPIF1<0所以异面直线AC与A1B1所成角的余弦值为SKIPIF1<0(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以SKIPIF1<0≌SKIPIF1<0,过点A作SKIPIF1<0于点R,连接B1R,于是SKIPIF1<0,故SKIPIF1<0为二面角A—A1C1—B1的平面角.在SKIPIF1<0中,SKIPIF1<0连接AB1,在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,从而SKIPIF1<0所以二面角A—A1C1—B1的正弦值为SKIPIF1<0(III)解:因为SKIPIF1<0平面A1B1C1,所以SKIPIF1<0取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND//C1H且SKIPIF1<0.又SKIPIF1<0平面AA1B1B,所以SKIPIF1<0平面AA1B1B,故SKIPIF1<0又SKIPIF1<0所以SKIPIF1<0平面MND,连接MD并延长交A1B1于点E,则SKIPIF1<0由SKIPIF1<02.【2012天津,理17】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.【答案】(1)详见解析,(2)SKIPIF1<0,(3)SKIPIF1<0【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),B(SKIPIF1<0,SKIPIF1<0,0),P(0,0,2).(1)证明:易得SKIPIF1<0=(0,1,-2),SKIPIF1<0=(2,0,0),于是SKIPIF1<0,所以PC⊥AD.(2)SKIPIF1<0=(0,1,-2),SKIPIF1<0=(2,-1,0).设平面PCD的法向量n=(x,y,z),则SKIPIF1<0即SKIPIF1<0不妨令z=1,可得n=(1,2,1).可取平面PAC的法向量m=(1,0,0).于是SKIPIF1<0,从而SKIPIF1<0.所以二面角A-PC-D的正弦值为SKIPIF1<0.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC.又PC平面PAC,所以PC⊥AD.(2)如图,作AH⊥PC于点H,连接DH.由PC⊥AD,PC⊥AH,可得PC⊥平面ADH.因此DH⊥PC,从而∠AHD为二面角A-PC-D的平面角.在Rt△PAC中,PA=2,AC=1,由此得SKIPIF1<0.由(1)知AD⊥AH,故在Rt△DAH中,SKIPIF1<0.因此SKIPIF1<0.所以二面角A-PC-D的正弦值为SKIPIF1<0.(3)如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF.故∠EBF或其补角为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC.在Rt△DAC中,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.在△AFB中,由SKIPIF1<0,SKIPIF1<0,sin∠FAB=sin135°=SKIPIF1<0,可得SKIPIF1<0.由余弦定理,BF2=AB2+AF2-2AB·AF·cos∠FAB,可得SKIPIF1<0.设AE=h.在Rt△EAF中,SKIPIF1<0.在Rt△BAE中,SKIPIF1<0.在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得SKIPIF1<0,可解得SKIPIF1<0.所以SKIPIF1<0.3.【2013天津,理17】如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA(1)证明B1C1⊥CE(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为SKIPIF1<0,求线段AM的长.【答案】(Ⅰ)详见解析;(Ⅱ)SKIPIF1<0;(Ⅲ)SKIPIF1<0【解析】解:(方法一)(1)证明:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).易得SKIPIF1<0=(1,0,-1),SKIPIF1<0=(-1,1,-1),于是SKIPIF1<0·SKIPIF1<0=0,所以B1C1⊥CE.(3)SKIPIF1<0=(0,1,0),SKIPIF1<0=(1,1,1).设SKIPIF1<0=λSKIPIF1<0=(λ,λ,λ),0≤λ≤1,有SKIPIF1<0=SKIPIF1<0+SKIPIF1<0=(λ,λ+1,λ).可取SKIPIF1<0=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ=|cos〈SKIPIF1<0,SKIPIF1<0〉|=SKIPIF1<0=SKIPIF1<0.于是SKIPIF1<0,解得SKIPIF1<0,所以AM=SKIPIF1<0.(方法二)(1)证明:因为侧棱CC1⊥底面A1B1C1D1,B1C1SKIPIF1<0平面A1B1C1D1,所以CC1⊥B1C1.经计算可得B1E=SKIPIF1<0,B1C1=SKIPIF1<0,EC1=SKIPIF1<0,从而B1E2=SKIPIF1<0,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1ESKIPIF1<0平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CESKIPIF1<0平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G.由(1),B1C1⊥CE,故CE⊥平面B1C1G,得CE⊥C1G所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=SKIPIF1<0,CC1=2,可得C1G=SKIPIF1<0.在Rt△B1C1G中,B1G=SKIPIF1<0,所以sin∠B1GC1=SKIPIF1<0,即二面角B1-CE-C1的正弦值为SKIPIF1<0.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=SKIPIF1<0,AH=SKIPIF1<0.在Rt△C1D1E中,C1D1=1,ED1=SKIPIF1<0,得EH=SKIPIF1<0.在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得SKIPIF1<0,整理得5x2-SKIPIF1<0-6=0,解得x=SKIPIF1<0.所以线段AM的长为SKIPIF1<0.4.【2014天津,理17】如图,在四棱锥SKIPIF1<0中,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0为棱SKIPIF1<0的中点.(Ⅰ)证明:SKIPIF1<0;(Ⅱ)求直线SKIPIF1<0与平面SKIPIF1<0所成角的正弦值;(Ⅲ)若SKIPIF1<0为棱SKIPIF1<0上一点,满足SKIPIF1<0,求二面角SKIPIF1<0的余弦值.【答案】(Ⅰ)详见试题分析;(Ⅱ)直线SKIPIF1<0与平面SKIPIF1<0所成角的正弦值为SKIPIF1<0;(Ⅲ)SKIPIF1<0.【解析】试题分析:(Ⅰ)可以建立空间直角坐标系,利用向量数量积来证明SKIPIF1<0。也可以利用综合法:要证SKIPIF1<0,由于SKIPIF1<0是异面直线,可将问题转化为证明线面垂直。由于点SKIPIF1<0为棱SKIPIF1<0的中点,可以先取SKIPIF1<0中点SKIPIF1<0,连结SKIPIF1<0,从而可证得SKIPIF1<0。由线面垂直的判定定理易证SKIPIF1<0平面SKIPIF1<0,从而SKIPIF1<0,最后证得SKIPIF1<0;(Ⅱ)向量法:先求平面SKIPIF1<0的法向量SKIPIF1<0,然后利用公式SKIPIF1<0求直线SKIPIF1<0与平面SKIPIF1<0所成角的正弦值.综合法:在(I)的基础上,可先证明SKIPIF1<0为直线SKIPIF1<0与平面SKIPIF1<0所成的角,在直角三角形SKIPIF1<0中,利用锐角三角函数即可求得直线SKIPIF1<0与平面SKIPIF1<0所成角的正弦值;(Ⅲ)向量法:先求平面SKIPIF1<0和平面SKIPIF1<0的法向量SKIPIF1<0,再利用公式SKIPIF1<0来求二面角SKIPIF1<0的余弦值.综合法:先利用三垂线定理或其逆定理作出二面角SKIPIF1<0的平面角,再利用解三角形的有关知识求其余弦值.试题解析:(方法一)依题意,以点SKIPIF1<0为原点建立空间直角坐标系(如图),可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0为棱SKIPIF1<0的中点,得SKIPIF1<0.(Ⅲ)向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由点SKIPIF1<0在棱SKIPIF1<0上,设SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因此,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.设SKIPIF1<0为平面SKIPIF1<0的法向量,则SKIPIF1<0即SKIPIF1<0不妨令SKIPIF1<0,可得SKIPIF1<0为平面SKIPIF1<0的一个法向量.取平面SKIPIF1<0的法向量SKIPIF1<0,则SKIPIF1<0.易知,二面角SKIPIF1<0是锐角,∴其余弦值为SKIPIF1<0.(方法二)(Ⅰ)如图,取SKIPIF1<0中点SKIPIF1<0,连结SKIPIF1<0,SKIPIF1<0.由于SKIPIF1<0分别为SKIPIF1<0的中点,故SKIPIF1<0,且SKIPIF1<0,又由已知,可得SKIPIF1<0且SKIPIF1<0,故四边形SKIPIF1<0为平行四边形,∴SKIPIF1<0.∵SKIPIF1<0底面SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,从而SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,于是SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.(Ⅱ)连结SKIPIF1<0,由(Ⅰ)有SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0.又∵SKIPIF1<0,SKIPIF1<0为SKIPIF1<0的中点,故SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,故平面SKIPIF1<0平面SKIPIF1<0.∴直线SKIPIF1<0在平面SKIPIF1<0内的射影为直线SKIPIF1<0,而SKIPIF1<0,可得SKIPIF1<0为锐角,故SKIPIF1<0为直线SKIPIF1<0与平面SKIPIF1<0所成的角.依题意,有SKIPIF1<0,而SKIPIF1<0为SKIPIF1<0中点,可得SKIPIF1<0,进而SKIPIF1<0.故在直角三角形SKIPIF1<0中,SKIP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论