上海市金山区2023年数学九上期末学业水平测试模拟试题含解析_第1页
上海市金山区2023年数学九上期末学业水平测试模拟试题含解析_第2页
上海市金山区2023年数学九上期末学业水平测试模拟试题含解析_第3页
上海市金山区2023年数学九上期末学业水平测试模拟试题含解析_第4页
上海市金山区2023年数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市金山区2023年数学九上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列一元二次方程中,有一个实数根为1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=02.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A. B. C. D.3.如图,在平面直角坐标系中,在轴上,,点的坐标为,绕点逆时针旋转,得到,若点的对应点恰好落在反比例函数的图像上,则的值为()A.4. B.3.5 C.3. D.2.54.我们定义一种新函数:形如(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4 B.3 C.2 D.15.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.66.为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为()A.1.7118×10 B.0.17118×10C.1.7118×10 D.171.18×107.关于抛物线,下列说法错误的是A.开口向上 B.对称轴是y轴C.函数有最大值 D.当x>0时,函数y随x的增大而增大8.下列事件中,必然发生的事件是()A.随意翻到一本书的某页,这页的页码是奇数B.通常温度降到0℃以下,纯净的水结冰C.地面发射一枚导弹,未击中空中目标D.测量某天的最低气温,结果为-150℃9.已知反比例函数y=﹣的图象上有三个点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则下列关系是正确的是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y2<y3<y110.如图,数轴上,,,四点中,能表示点的是()A. B. C. D.11.如果两个相似多边形的面积之比为,那么它们的周长之比是()A. B. C. D.12.已知正比例函数y=ax与反比例函数在同一坐标系中的图象如图,判断二次函数y=ax2+k在坐系中的大致图象是()A. B.C. D.二、填空题(每题4分,共24分)13.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元.14.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.15.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.16.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.17.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是_____.18.如图,,如果,那么_________________.三、解答题(共78分)19.(8分)如图,已知和中,,,,,;(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数.20.(8分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.21.(8分)如图,矩形中,是边上一动点,过点的反比例函数的图象与边相交于点.(1)点运动到边的中点时,求反比例函数的表达式;(2)连接,求的值.22.(10分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.23.(10分)如图,在平面直角坐标系xOy中,A(3,4),B(0,﹣1),C(4,0).(1)以点B为中心,把△ABC逆时针旋转90°,画出旋转后的图形;(2)在(1)中的条件下,①点C经过的路径弧的长为(结果保留π);②写出点A'的坐标为.24.(10分)如图,△ABC中,AB=8,AC=6.(1)请用尺规作图的方法在AB上找点D,使得△ACD∽△ABC(保留作图痕迹,不写作法)(2)在(1)的条件下,求AD的长25.(12分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.26.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数的图象经过点P,求m的值.

参考答案一、选择题(每题4分,共48分)1、D【分析】由题意,把x=1分别代入方程左边,然后进行判断,即可得到答案.【详解】解:当x=1时,分别代入方程的左边,则A、1+2=,故A错误;B、1-4+4=1,故B错误;C、1+4+10=15,故C错误;D、1+4-5=0,故D正确;故选:D.【点睛】本题考查了一元二次方程的解,解题的关键是分别把x=1代入方程进行解题.2、B【分析】从题中可以知道,共有5个数,只需求出5个数中为无理数的个数就可以得到答案.【详解】从,-6,1.2,π,中可以知道

π和为无理数.其余都为有理数.

故从数据,-6,1.2,π,中任取一数,则该数为无理数的概率为,

故选:B.【点睛】此题考查概率的计算方法,无理数的识别.解题关键在于掌握:概率=所求情况数与总情况数之比.3、C【分析】先通过条件算出O’坐标,代入反比例函数求出k即可.【详解】由题干可知,B点坐标为(1,0),旋转90°后,可知B’坐标为(3,2),O’坐标为(3,1).∵双曲线经过O’,∴1=,解得k=3.故选C.【点睛】本题考查反比例函数图象与性质,关键在于坐标平面内的图形变换找出关键点坐标.4、A【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,存在函数值大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为或,因此④也是正确的;⑤从图象上看,存在函数值要大于当时的,因此⑤是不正确的;故选A【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.5、D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6、C【分析】用科学记数法表示较大数的形式是,其中,n为正整数,只要确定a,n即可.【详解】将171.18万用科学记数法表示为:1.7118×1.故选:C.【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键.7、C【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】A.因为a=2>0,所以开口向上,正确;B.对称轴是y轴,正确;C.当x=0时,函数有最小值0,错误;D.当x>0时,y随x增大而增大,正确;故选:C【点睛】考查二次函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.8、B【解析】解:A.随意翻到一本书的某页,这页的页码是奇数,是随机事件;B.通常温度降到0℃以下,纯净的水结冰,是必然事件;C.地面发射一枚导弹,未击中空中目标,是随机事件;D.测量某天的最低气温,结果为-150℃,是不可能事件.故选B.9、B【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】解:∵反比例函数y=﹣,

∴函数图象在第二、四象限,且在每个象限内,y随x的增大而增大,

∵函数的图象上有三个点(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,

∴y2<y1<0,y3>0∴.y2<y1<y3

故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.10、C【解析】首先判断出的近似值是多少,然后根据数轴的特征,当数轴方向朝右时,右边的数总比左边的数大,判断出能表示点是哪个即可.【详解】解:∵≈1.732,在1.5与2之间,∴数轴上,,,四点中,能表示的点是点P.故选:C【点睛】本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.11、A【分析】根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【详解】解:∵两个相似多边形面积的比为,

∴两个相似多边形周长的比等于,

∴这两个相似多边形周长的比是.

故选:A.【点睛】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.12、B【解析】根据正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,然后根据二次函数图象的性质即可得出答案.【详解】正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,

则二次函数y=ax2+k的图象开口向下,且与y轴的交点在y轴的正半轴,

所以大致图象为B图象.

故选B.【点睛】本题考查了二次函数及正比例函数与反比例函数的图象,属于基础题,关键是注意数形结合的思想解题.二、填空题(每题4分,共24分)13、257【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案.【详解】设二等奖人数为m,三等奖人数为n,二等奖单价为a,三等奖单价为b,根据题意列表分析如下:一等奖二等奖三等奖去年获奖人数3mn奖品单价34ab今年获奖人数3+1=4m+2n+3奖品单价34+6=40a+3b+2∵今年购买奖品的总费用比去年增加了159元∴整理得∵,,为5的倍数∴的值为10或15当时,,代入得,解得不符合题意,舍去;当时,有3种情况:①,,代入得,解得,符合题意此时去年购买奖品一共花费元②,,代入得,解得,不符合题意,舍去③,,代入得,解得,不符合题意,舍去综上可得,去年购买奖品一共花费257元故答案为:257.【点睛】本题考查了方程与不等式的综合应用,难度较大,根据题意推出的取值,然后分类讨论是解题的关键.14、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.【点睛】本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、【解析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,,即展开图是一个半圆,点是展开图弧的中点,,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,,,即蚂蚁爬行的最短距离是.故答案为:.【点睛】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.17、m≥﹣1【解析】试题分析:抛物线的对称轴为直线,∵当x>1时,y的值随x值的增大而增大,∴﹣m≤1,解得m≥﹣1.18、【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵,∴,即,解得:.故答案为:.【点睛】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.三、解答题(共78分)19、(1)见解析(2)绕点顺时针旋转,可以得到(3)【解析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.【详解】∵,,,∴,∴,,∴,∴;通过观察可知绕点顺时针旋转,可以得到;由知,,∴.【点睛】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.20、(1)x1=−3,x2=(2)【分析】(1)利用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)3x(x+3)=2(x+3)3x(x+3)-2(x+3)=1(x+3)(3x-2)=13x-2=1或x+3=1∴x1=,x2=-3;(2)2x2-4x-3=1a=2,b=-4,c=-3,△=16+24=41>1,,∴x1=1+,x2=1-.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21、(1);(2).【分析】(1)先求出点F坐标,利用待定系数法求出反比例函数的表达式;(2)利用点F的的横坐标为4,点的纵坐标为3,分别求得用k表示的BF、AE长,继而求得CF、CE长,从而求得结论.【详解】(1)是的中点,,点的坐标为,将点的坐标为代入得:∴,∴反比例函数的表达式;(2)点的横坐标为4,代入,,,,点的纵坐标为3,代入,,即,,,所以.【点睛】此题是反比例函数与几何的综合题,主要考查了待定系数法,矩形的性质,锐角三角函数,掌握反比例函数的性质是解本题的关键.22、(1)1;(2)见解析,【分析】(1)设红球有x个,根据题意得:;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种.【详解】解:(1)设红球有x个,根据题意得:,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个(2)列表如下:

红黄黄蓝红---(黄,红)(黄,红)(蓝,红)黄(红,黄)---(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)---(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=【点睛】考核知识点:用列举法求概率.列表是关键.23、(1)见解析;(2)①,②(﹣5,2).【分析】(1)利用网格特点和旋转的性质画出A、C的对应点A′、C′,然后顺次连接即可;(2)①先利用勾股定理计算出BC的长,然后利用弧长公式计算;②利用(1)中所画图形写出点A′的坐标.【详解】解:(1)如图,△A′BC′为所作;(2)①BC=,故点C经过的路径弧的长==π;②点A′的坐标为(﹣5,2).故答案为:π,(﹣5,2).【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了弧长公式的应用.24、(1)见图(2)AD=.【解析】(1)图形见详解,(2)根据相似列比例式即可求解.【详解】解:(1)见下图(2)∵△ACD∽△ABC,∴AC:AB=AD:AC,∵AB=8,AC=6,∴AD=.【点睛】本题考查了尺规作图和相似三角形的性质,中等难度,熟悉尺规作图步骤和相似三角形的性质是解题关键.25、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论