版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市交通大学附属中学嘉定分校2023-2024学年数学高一上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确2.已知是的三个内角,设,若恒成立,则实数的取值范围是()A. B.C. D.3.冰糖葫芦是中国传统小吃,起源于南宋.由山楂串成的冰糖葫芦如图1所示,若将山楂看成是大小相同的圆,竹签看成一条线段,如图2所示,且山楂的半径(图2中圆的半径)为2,竹签所在的直线方程为,则与该串冰糖葫芦的山楂都相切的直线方程为()A. B.C. D.4.函数fxA.2π B.-πC.π D.π5.已知a,b,,那么下列命题中正确的是()A.若,则 B.若,则C.若,且,则 D.若,且,则6.设为定义在上的偶函数,且在上为增函数,则的大小顺序是()A. B.C. D.7.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点8.已知,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.设,,则()A.且 B.且C.且 D.且10.直线与函数的图像恰有三个公共点,则实数的取值范围是A. B.C. D.11.命题“”的否定是()A. B.C. D.12.已知全集,集合,集合,则为A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知的图象的对称轴为_________________14.已知函数,则_________15.已知函数,则函数零点的个数为_________16.若函数,,则_________;当时,方程的所有实数根的和为__________.三、解答题(本大题共6小题,共70分)17.已知奇函数和偶函数满足(1)求和的解析式;(2)存在,,使得成立,求实数a的取值范围18.求下列各式的值(1);(2)19.已知函数(x∈R,(m>0)是奇函数.(1)求m的值:(2)用定义法证明:f(x)是R上的增函数.20.已知向量函数(1)若时,不等式恒成立,求实数的取值范围;(2)当时,讨论函数的零点情况.21.(1)若是的根,求的值(2)若,,且,,求的值22.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.2、D【解析】先化简,因为恒成立,所以恒成立,即恒成立,所以,故选D.考点:三角函数二倍角公式、降次公式;3、D【解析】利用平行线间距离公式即得.【详解】由题可设与该串冰糖葫芦的山楂都相切的直线方程为,则,∴,∴与该串冰糖葫芦的山楂都相切的直线方程为.故选:D.4、C【解析】由题意得ω=2,再代入三角函数的周期公式T=【详解】根据三角函数的周期公式T=2π函数fx=cos故选:C5、A【解析】根据不等式的性质判断【详解】若,显然有,所以,A正确;若,当时,,B错;若,则,当时,,,C错;若,且,也满足已知,此时,D错;故选:A6、A【解析】根据单调性结合偶函数性质,进行比较大小即可得解.【详解】因为为偶函数,所以又在上为增函数,所以,所以故选:A7、D【解析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【详解】解:,,∴是边上的一个三等分点故选:D【点睛】本题考查向量的运算法则及三点共线的充要条件,属于基础题8、A【解析】化简得,再利用充分非必要条件定义判断得解.【详解】解:.因为“”是“”的充分非必要条件,所以“”是“”的充分非必要条件.故选:A9、B【解析】容易得出,,即得出,,从而得出,【详解】,.又,即,,,故选B.【点睛】本题考查对数函数单调性的应用,求解时注意总结规律,即对数的底数和真数同时大于1或同时大于0小于1,函数值大于0;若一个大于1,另一个大于0小于1,函数值小于010、C【解析】解方程组,得,或由直线与函数的图像恰有三个公共点,作出图象,结合图象,知∴实数的取值范围是故选C【点睛】本题考查满足条件的实数的取值范围的求法,解题时要认真审题,注意数形结合思想的合理运用11、B【解析】根据特称命题的否定为全称命题,将并否定原结论,写出命题的否定即可.【详解】由原命题为特称命题,故其否定为“”.故选:B12、A【解析】,所以,选A.二、填空题(本大题共4小题,共20分)13、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:14、【解析】运用代入法进行求解即可.【详解】,故答案为:15、【解析】解方程,即可得解.【详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.16、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.三、解答题(本大题共6小题,共70分)17、(1),(2)【解析】(1)利用奇偶性得到方程组,求解和的解析式;(2)在第一问的基础上,问题转化为在上有解,分类讨论,结合对勾函数单调性求解出的最值,进而求出实数a的取值范围.【小问1详解】因为奇函数和偶函数满足①,所以②;联立①②得:,;【小问2详解】变形为,因为,所以,所以,当时,在上有解,符合要求;令,由对勾函数可知,当时,在上单调递减,在上单调递增,,要想上有解,只需,解得:,所以;若且,在上单调递增,要想上有解,只需,解得:,所以;综上:实数a的取值范围为18、(1);(2).【解析】(1)首先利用公式降幂,然后将写为将化为即可得解;(2)将记为,记为,再用公式展开,然后化简求值.【详解】(1)原式=(2)原式=故答案为:2;-1【点睛】本题考查三角函数诱导公式,二倍角公式,两角和与差的余弦公式,属于基础题.19、(1)2(2)证明见解析【解析】(1)因为是定义在R上的奇函数,则,即可得出答案.(2)通过,来证明f(x)是R上的增函数.【小问1详解】因为函数是奇函数,则,解得,经检验,当时,为奇函数,所以值为2;【小问2详解】证明:由(1)可知,,设,则,因为,所以,故,即,所以是R上的增函数.20、(1);(2)见解析【解析】(1)由题意得,结合不等式恒成立,建立m的不等式组,从而得到实数的取值范围;(2))令得:即,对m分类讨论即可得到函数的零点情况.【详解】(1)由题意得,,当时,∴,又恒成立,则解得:(2)令得:得:,则.由图知:当或,即或时,0个零点;当或,即或时,1个零点;当或,即或时,2个零点;当,即时,3个零点.综上:或时,0个零点;或时,1个零点;或时,2个零点;时,3个零点.【点睛】本题考查三角函数的图像与性质的应用,三角不等式恒成立问题,函数的零点问题及三角函数的化简,属于中档题.21、(1);(2)【解析】(1)先求出,再通过诱导公式及切化弦化简原式后再代值即可;(2)通过角的范围及已知的三角函数值求出和,再运用正弦的两角差的公式计算即可.【详解】(1)方程解得或,因为为其解,所以.则原式由于,所以原式.(2)因为,所以,又因为,所以,因为,,可得,又,可得,而.22、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年培训教育机构场地租赁协议版B版
- 2024司机岗位聘用合同书样本
- 2024版环保新能源项目投资与合作合同3篇
- 气焊气割作业危险危害因素及预防控制措施
- 2024年度高层管理人员雇佣合同及其绩效评估机制3篇
- 人性的弱点心得体会
- 工业设备减震方案优化
- 二零二四年度授权合同的授权范围、权利与义务描述3篇
- 2024版新建住宅购买协议3篇
- 隧道排水工程安全管理方案
- 老年人常见病的预防与照护
- 《晶体缺陷》课件
- 产品外观检验标准通用
- 2024年内蒙古包钢集团招聘笔试参考题库含答案解析
- 国开电大《人文英语3》一平台机考总题库珍藏版
- 《建筑基坑工程监测技术标准》(50497-2019)
- 高铁接触网案例 更换平腕臂绝缘子
- 2023年Cable开发工程师年度总结及下年规划
- 躯体疾病所致精神障碍的治疗及护理
- 城市消防站建设标准建标152-2021doc
- 2023-2024年山东省聊城市高一上学期11月期中考试物理试题 (解析版)
评论
0/150
提交评论