上海市松江区统考2023年数学高一上期末学业水平测试模拟试题含解析_第1页
上海市松江区统考2023年数学高一上期末学业水平测试模拟试题含解析_第2页
上海市松江区统考2023年数学高一上期末学业水平测试模拟试题含解析_第3页
上海市松江区统考2023年数学高一上期末学业水平测试模拟试题含解析_第4页
上海市松江区统考2023年数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市松江区统考2023年数学高一上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若直线过点且倾角为,若直线与轴交于点,则点的坐标为()A. B.C. D.2.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.3.集合用列举法表示是()A. B.C. D.4.已知函数f(x)=3x       A. B.C. D.5.已知为所在平面内一点,,则()A. B.C. D.6.圆与圆有()条公切线A.0 B.2C.3 D.47.为了鼓励大家节约用水,北京市居民用水实行阶梯水价,其中每户的户年用水量与水价的关系如下表所示:分档户年用水量(立方米)水价(元/立方米)第一阶梯0-180(含)5第二阶梯181-260(含)7第三阶梯260以上9假设居住在北京的某户家庭2021年的年用水量为200m3,则该户家庭A.1800元 B.1400元C.1040元 D.1000元8.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为(单位:),鲑鱼的耗氧量的单位数为.科学研究发现与成正比.当时,鲑鱼的耗氧量的单位数为.当时,其耗氧量的单位数为()A. B.C. D.10.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b11.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.212.下列函数是奇函数,且在上单调递增的是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.若一个扇形的周长为,圆心角为2弧度,则该扇形的面积为__________14.已知单位向量与的夹角为,向量的夹角为,则cos=_______15.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________16.用表示a,b中的较小者,则的最大值是____.三、解答题(本大题共6小题,共70分)17.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;18.已知集合,,(1)求;(2)若,求m的取值范围19.函数(1)解不等式;(2)若方程有实数解,求实数的取值范围20.已知方程x2+y2-2x-4y+m=0(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程21.给出以下定义:设m为给定的实常数,若函数在其定义域内存在实数,使得成立,则称函数为“函数”.(1)判断函数是否为“函数”;(2)若函数为“函数”,求实数a的取值范围;(3)已知为“函数”,设.若对任意的,,当时,都有成立,求实数的最大值.22.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】利用直线过的定点和倾斜角写出直线的方程,求出与轴的交点,得出答案【详解】直线过点且倾角为,则直线方程为,化简得令,解得,点的坐标为故选:C【点睛】本题考查点斜式直线方程的应用,考查学生计算能力,属于基础题2、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3、D【解析】解不等式,结合列举法可得结果.【详解】.故选:D4、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B5、A【解析】根据平面向量的线性运算及平面向量基本定理即可得出答案.【详解】解:因为为所在平面内一点,,所以.故选:A6、B【解析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B7、C【解析】结合阶梯水价直接求解即可.【详解】由表可知,当用水量为180m3时,水费为当水价在第二阶段时,超出20m3,水费为则年用水量为200m3,水价为故选:C8、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B9、D【解析】设,利用当时,鲑鱼的耗氧量的单位数为求出后可计算时鲑鱼耗氧量的单位数.【详解】设,因为时,,故,所以,故时,即.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10、C【解析】根据对数函数的单调性和中间数可得正确的选项.【详解】因为,故即,而,故,即,而,故,故即,故,故选:C11、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值12、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.二、填空题(本大题共4小题,共20分)13、4【解析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积【详解】设扇形的半径为:R,所以2R+2R=8,所以R=2,扇形的弧长为:4,半径为2,扇形的面积为:4(cm2)故答案为4【点睛】本题是基础题,考查扇形的面积公式的应用,考查计算能力14、【解析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【点睛】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.15、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:316、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)是R上的增函数,证明详见解析.【解析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.18、(1)(2)【解析】(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;(2)根据条件建立不等式组,可求得所求范围.【小问1详解】因为,,所以,【小问2详解】因为,所以解得.故m的取值范围是19、(1)(2)【解析】(1)由,根据对数的单调性可得,然后解指数不等式即可.(2)由实数根,化为有实根,令,有正根即可,对称轴,开口向上,只需即可求解.【详解】(1)由,即,所以,,解得所以不等式的解集为.(2)由实数根,即有实数根,所以有实根,两边平方整理可得令,且,由题意知有大于根即可,即,令,,故故.故实数的取值范围.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.20、(1)m<5;(2);(3)【解析】详解】(1)由,得:,,;(2)由题意,把代入,得,,,∵得出:,∴,∴;(3)圆心为,,半径,圆的方程.考点:直线与圆的位置关系.21、(1)是(2)(3)【解析】(1)根据定义判得时,满足,进而判断;(2)根据题意得,,进而整理得存在实数使得,再结合和讨论求解即可;(3)由题知,故不妨设,进而得,故构造函数,则函数在上单调递增,在作出函数图像,数形结合求解即可.【小问1详解】解:的定义域为,假设函数是“函数,则存在定义域内的实数使得,所以,所以,所以,所以函数“函数【小问2详解】解:函数有意义,则,定义域为因为函数为“函数”,所以存在实数使得成立,即存在实数使得,所以存在实数使得成立,即,所以当时,,满足题意;当时,,即,解得且,所以实数a的取值范围是【小问3详解】解:由为“函数”得,即,所以,不妨设,则由得,所以故令,则在上单调递增,又,作出函数图像如图,所以实数的取值范围为,即实数的最大值为22、(1),;(2)见解析;(3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1)在上是奇函数,∴,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论