上海外国语大附属外国语学校2023年八上数学期末质量检测试题含解析_第1页
上海外国语大附属外国语学校2023年八上数学期末质量检测试题含解析_第2页
上海外国语大附属外国语学校2023年八上数学期末质量检测试题含解析_第3页
上海外国语大附属外国语学校2023年八上数学期末质量检测试题含解析_第4页
上海外国语大附属外国语学校2023年八上数学期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海外国语大附属外国语学校2023年八上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列等式变形中,不正确的是()A.若x=y,则x+5=y+5 B.若,则x=yC.若-3x=-3y,则x=y D.若m2x=m2y,则x=y2.如图,,,垂足分别是,,且,若利用“”证明,则需添加的条件是()A. B.C. D.3.下列四个图案中,不是轴对称图案的是()A. B.C. D.4.在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b26.如图,在△ABC中,∠BAC=80°,∠C=70°,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠DAC的度数为()A.60° B.50° C.40° D.30°7.下列命题是假命题的是A.全等三角形的对应角相等 B.若||=-,则a>0C.两直线平行,内错角相等 D.只有锐角才有余角8.点在()A.第一象限 B.第二象限 C.第二象限 D.第四象限9.对于不为零的实数a,b,现有一组式子:,–,0,,–,0……,则第2019个式子是()A.0 B. C.– D.–10.下列各式计算正确的是()A. B.(3xy)2÷(xy)=3xyC. D.2x•3x5=6x6二、填空题(每小题3分,共24分)11.某鞋店有甲、乙两款鞋各30双,甲鞋每双200元,乙鞋每双50元,该店促销的方式为:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.打烊后得知.此两款鞋共卖得2750元,还剩鞋共25双,设剩甲鞋x双,乙鞋y双,则依题意可列出方程组12.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.13.计算:23×20.2+77×20.2=______.14.如图,在中,的垂直平分线交的平分线于,若,,则的度数是________.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是_________米.17.在△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________.18.若4a=2,4b=3,则42a+b的值为_____.三、解答题(共66分)19.(10分)如图,直角坐标系中,点是直线上第一象限内的点,点,以为边作等腰,点在轴上,且位于点的右边,直线交轴于点.(1)求点的坐标;(2)点向上平移个单位落在的内部(不包括边界),求的取值范围.20.(6分)如图,在平面直角坐标系中,,,,动点P从点O出发,以每秒2单位长度的速度沿线段运动;动点Q同时从点O出发,以每秒1单位长度的速度沿线段运动,其中一点先到达终点B时,另一点也随之停止运动,设运动时间为秒.(1)当时,已知PQ的长为,求的值.(2)在整个运动过程中,①设的面积为,求与的函数关系式.②当的面积为18时,直接写出的值.21.(6分)如图,已知△ABC中,∠C=90°,∠B=15°,AC=2cm,分别以A、B两点为圆心,大于AB的长为半径画弧,两弧分别相交于E、F两点,直线EF交BC于点D,求BD的长.22.(8分)如图,四边形ABCD的顶点坐标为A(—5,1),B(—1,1),

C(—1,6),D(—5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出坐标.23.(8分)如图,已知AC⊥BC,BD⊥AD,AD与BC交于点O,AC=BD.求证:△OAB是等腰三角形.24.(8分)现有一长方形纸片ABCD,如图所示,将△ADE沿AE折叠,使点D恰好落在BC边上的点F,已知AB=6,BC=10,求EC的长.25.(10分)在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.26.(10分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据等式的性质逐项排查即可.【详解】解:A.若x=y,则x+5=y+5,符合题意;B.若,则x=y,符合题意;C.若-3x=-3y,则x=y,符合题意;D.若m2x=m2y,当m=0,x=y不一定成立,不符合题意.故选:D.【点睛】本题考查了等式的性质,给等式左右两边同加(减)一个数或式,等式仍然成立;给等式左右两边同乘(除)一个不为零的数或式,等式仍然成立.2、B【解析】本题要判定,已知DE=BF,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA后可根据HL判定.【详解】在△ABF与△CDE中,DE=BF,由DE⊥AC,BF⊥AC,可得∠BFA=∠DEC=90°.∴添加DC=AB后,满足HL.故选B.【点睛】本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3、B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、是轴对称图案,故本选项不符合题意;B、不是轴对称图案,故本选项符合题意;C、是轴对称图案,故本选项不符合题意;D、是轴对称图案,故本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.4、C【分析】由y的值随着x值的增大而减小可得出2m﹣1<1,再利用b=1>1,可得出一次函数y=(2m﹣1)x+1的图象与y轴交点在其正半轴上,进而可得出一次函数y=(2m﹣1)x+1的图象不经过第三象限.【详解】解:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<1.∵2m﹣1<1,1>1,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,即在一次函数y=kx+b(k≠1)中,①k>1,b>1⇔y=kx+b的图象在一、二、三象限;②k>1,b<1⇔y=kx+b的图象在一、三、四象限;③k<1,b>1⇔y=kx+b的图象在一、二、四象限;④k<1,b<1⇔y=kx+b的图象在二、三、四象限.5、A【分析】由题意可知左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即可解答.【详解】解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.【点睛】本题主要考查平方差公式的几何背景,解题的关键是运用阴影部分的面积相等得出关系式.6、B【分析】根据三角形内角和定理求出∠B=30°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】解:∵∠BAC=80°,∠C=70°,∴∠B=30°由作图可知:MN垂直平分线段AB,可得DA=DB,则∠DAB=∠B=30°,故∠DAC=80°-30°=50°,故选:B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.7、B【分析】分别根据全等三角形的性质、绝对值的性质、平行线的性质和余角的性质判断各命题即可.【详解】解:A.全等三角形的对应角相等,是真命题;B.若||=-,则a≤0,故原命题是假命题;C.两直线平行,内错角相等,是真命题;D.只有锐角才有余角,是真命题,故选:B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题真假的关键是要熟悉课本中的性质定理.8、A【解析】根据平面直角坐标系中,点所在象限和点的坐标的特点,即可得到答案.【详解】∵1>0,2>0,∴在第一象限,故选A.【点睛】本题主要考查点的横纵坐标的正负性和点所在的象限的关系,熟记点的横纵坐标的正负性和所在象限的关系,是解题的关键.9、A【分析】观察该组式子可以发现每三个一循环,且最后一个都为0,再根据2019是3的倍数可得结果.【详解】解:根据题意得:每三个式子中最后一个式子为0,而2019÷3=673,即第2019个式子是:0.故选A.【点睛】本题考查了代数式的规律,解答本题的关键仔细观察所给式子的特点,总结出规律,从而推出第n个式子.10、D【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】A.,故选项A错误;B.(3xy)2÷(xy)=9xy,故选项B错误;C.与不是同类二次根式,不能合并,故选项C错误;D.2x•3x5=6x6,正确.故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、.【解析】试题分析:设剩甲鞋x双,乙鞋y双,由题意得,.考点:由实际问题抽象出二元一次方程组.12、y=-x+1.【解析】根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.13、1【分析】先把20.2提取出来,再把其它的数相加,然后再进行计算即可.【详解】根据题意得:

=1.【点睛】本题考查了因式分解的应用,解题的关键是找出公因式,再进行提取,是一道基础题.14、58°【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BE=CE,可得出∠DBC=∠ECB=∠ABD,然后根据三角形内角和定理计算出∠DBC的度数,即可算出∠BEF的度数.【详解】解:∵BD平分∠ABC,

∴∠DBC=∠ABD,∵的垂直平分线交的平分线于,

∴BE=CE,

∴∠DBC=∠ECB=∠ABD,∵,,

∴∠DBC=(180°-60°-24°)=32°,

∴∠BEF=90°-32°=58°,

故答案为:58°.【点睛】本题考查线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.15、12°.【解析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.16、8【解析】利用勾股定理求得树的顶端到折断处的长即可得解.【详解】解:根据题意可得树顶端到折断处的长为=5米,则这棵树折断之前的高度是5+3=8米.故答案为:8.【点睛】本题主要考查勾股定理的应用,解此题的关键在于熟练掌握其知识点.17、140°.【解析】∠C的外角=∠A+∠B=60°+80°=140°.故答案为140°.18、1【分析】根据幂的乘方以及同底数幂的乘法法则计算即可.【详解】解:∵4a=2,4b=3,∴42a+b=(4a)2•4b=22×3=4×3=1.故答案为:1.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)根据题意,设点,由等腰直角三角形的性质进行求解即可得解;(2)过作轴的垂线交直线于点,交直线于,分别以A点在直线OC和直线CD上为临界条件进行求解即可的到m的值.【详解】(1)设点过点作轴,交点为由题意得为等腰直角三角形∵轴∴∵点在点的右边∴,解得∴,;(2)∵,∴直线的解析式为如下图,过作轴的垂线交直线于点,交直线于∵∴解得的坐标为,Q的坐标为∴.【点睛】本题属于一次函数的综合题,包含等腰直角三角形的性质等相关知识点,熟练掌握一次函数综合题的解决技巧是解决本题的关键.20、(1);(2)①与函数关系式为,②当的面积为18时,或1.【分析】(1)先根据t的范围分析出Q点在OC上,P在OA上,用t表示出OQ和OP的长,根据勾股定理列式求出t的值;(2)①分三种情况讨论,根据t的不同范围,先用t表示出线段长,再表示出面积;②根据①所列的式子,令面积等于18,求出符合条件的t的值.【详解】(1)当时,,,即Q点在OC上,P在OA上时,设时间为,则,,∴在中,,令.解得,当时,;(2)①当时,即Q在OC上,P在OA上时,,即;当时,即Q在CB上,P在OA上时,,即;当时,即Q在BC上,P在AB上时,,即,∴;综上,与函数关系式为;②当时,,当时,令,解得,符合题意,当时,令,解得,(舍去),综上,当的面积为18时,或1.【点睛】本题考查动点问题,解题的关键是根据几何知识,用时间t表示长线段长进而表示出三角形的面积,需要注意根据点的运动过程进行分类讨论.21、4cm【分析】根据EF为线段AB的垂直平分线得出AD=BD,求出∠ADC=30°,根据含30度角的直角三角形性质求出AD即可.【详解】由图可知,EF为线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=30°,在Rt△ACD中,AC=2cm,∴BD=AD=2AC=4cm.【点睛】本题主要考查了直角三角形和线段的垂直平分线性质的应用,学会运用性质,是解答此题的关键.22、详见解析【解析】根据平面直角坐标系,分别找出点A、B、C、D关于x轴的对称点A′、B′、C′、D′的位置,然后顺次连接即可,根据关于x轴对称的点的横坐标相同,纵坐标互为相反数写出各点的坐标即可,根据平面直角坐标系,分别找出点A、B、C、D关于y轴的对称点A″、B″、C″、D″的位置,然后顺次连接即可,根据关于y轴对称的点的横坐标互为相反数,纵坐标相同写出各点的坐标即可.【详解】解:如图所示,四边形A′B′C′D′即为所求作的关于x轴的对称图形,A′(-5,-1),B′(-1,-1),C′(-1,-6),D′(-5,-4),

四边形A″B″C″D″即为所求作的关于y轴的对称图形,A″(5,1),B″(1,1),C″(1,6),D″(5,4).【点睛】本题主要考查了利用轴对称变换作图和关于x轴对称的点的横坐标相同,纵坐标互为相反数,关于y轴对称的点的横坐标互为相反数,纵坐标相同,解决本题的关键是准确找出各对称点的位置.23、见解析【分析】利用HL定理得出△ABD≌△BAC即可得出∠ABC=∠BAD,再利用等腰三角形的判定得出即可.【详解】证明:∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴∠ABC=∠BAD,∴△OAB是等腰三角形【点睛】本题主要考查了全等三角形的判定与性质以及等腰三角形的判定,根据已知得出Rt△ABD≌Rt△BAC是解题关键.24、【分析】由勾股定理求出BF=8,得出FC=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得x=,即可得出答案.【详解】解:∵四边形A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论