版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为()A.相切 B.相交C.相离 D.不能确定2.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20° B.40° C.60° D.80°3.将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于()A.-3 B.1 C.4 D.74.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且6.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值y随x的增大而减小C.点P为图像上的任意一点,过点P作PA⊥x轴于点A.△POA的面积是D.若点A(-1,)和点B(,)在这个函数图像上,则<7.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y18.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b29.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11 B.15 C.11或15 D.不能确定10.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.如果在比例尺1:100000的滨海区地图上,招宝山风景区与郑氏十七房的距离约是19cm,则它们之间的实际距离约为_____千米.12.抛物线y=﹣2x2+4x﹣1的对称轴是直线________
.13.如图,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,连结BP,CP,则△BPC的面积为_____.14.一圆锥的侧面积为,底面半径为3,则该圆锥的母线长为________.15.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.16.如图,在中,,,点为边上一点,作于点,若,,则的值为____.17.如图,已知在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得△DEC,此时CD⊥AB,连接AE,则tan∠EAC=____.18.抛物线y=﹣x2+2x﹣5与y轴的交点坐标为_____.三、解答题(共66分)19.(10分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.20.(6分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.21.(6分)用配方法把二次函数y=﹣2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.22.(8分)解下列方程:23.(8分)已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB方向向终点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点C匀速移动,速度为2cm/s.如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止.几秒后,以Q,B,P为顶点的三角形与△ABC相似?24.(8分)解方程:x2-5=4x.25.(10分)如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.26.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先解方程求得d,根据圆心到直线的距离d与圆的半径r之间的关系即可解题.【详解】解方程:x2–x–6=0,即:,解得,或(不合题意,舍去),
当时,,则直线与圆的位置关系是相交;故选:B【点睛】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离和半径的大小关系.没有交点,则;一个交点,则;两个交点,则.2、B【解析】因为旋转后得到△AMN与△ABC相似,则∠AMN=∠C=40°,因为旋转前∠AMN=80°,所以旋转角度为40°,故选B.3、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n=1,然后计算m+n即可.【详解】x2-4x+3=0,
x2-4x=-3
x2-4x+4=-3+4,
(x-2)2=1,
即n=1.
故选B.【点睛】本题考查了解一元二次方程的应用,解题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4、A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】解:A、是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.6、B【分析】根据反比例函数图象与系数的关系解答.【详解】解:A、反比例函数中的>0,则该函数图象分布在第一、三象限,故本选项说法正确.
B、反比例函数中的>0,则该函数图象在每一象限内y随x的增大而减小,故本选项说法错误.
C、点P为图像上的任意一点,过点P作PA⊥x轴于点A.,∴△POA的面积=,故本选项正确.D、∵反比例函数,点A(-1,)和点B(,)在这个函数图像上,则y1<y2,故本选项正确.
故选:B.【点睛】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;还考查了k的几何意义.7、A【解析】试题分析:∵反比例函数中,k=-4<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故选A.考点:反比例函数图象上点的坐标特征.8、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式9、B【详解】解:方程x2-10x+21=0,变形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三边为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1.故选:B.10、A【分析】根据题意可知,此题是不放回实验,一共有12×11=132种情况,两人的血型均为O型的有两种可能性,从而可以求得相应的概率.【详解】解:由题意可得,P(A)=,故选A.【点睛】本题考查列表法和树状图法,解答本题的关键是明确题意,求出相应的概率.二、填空题(每小题3分,共24分)11、1.【分析】根据比例尺=图上距离∶实际距离,列比例式即可求得它们之间的实际距离.要注意统一单位.【详解】解:设它们之间的实际距离为xcm,1∶100000=1∶x,解得x=100000.100000cm=1千米.所以它们之间的实际距离为1千米.故答案为1.【点睛】本题考查了比例线段.熟练运用比例尺进行计算,注意单位的转换.12、x=1【解析】根据抛物线y=ax2+bx+c的对称轴是x=即可求解.【详解】抛物线y=−2x2+4x−1的对称轴是直线x=.故答案为:x=1.【点睛】本题考查了二次函数的对称轴.熟记二次函数y=ax2+bx+c的对称轴:x=是解题的关键.13、1【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,(证明见备注)△BEC的面积=S=6,BP=BE,则△BPC的面积=△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=CG证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=AF,又∵AF=CF,∴HF=CF,∴HF:CF=,∵EH∥BF,∴EG:CG=HF:CF=,∴EG=CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.14、2【分析】圆锥的侧面积=底面周长×母线长÷1.【详解】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=×6πx=12π.解得:x=2,故答案为2.15、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,
∴点G是△ABC的重心,D是BC的中点,
∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.16、【分析】作辅助线证明四边形DFCE是矩形,得DF=CE,根据角平分线证明∠ACD=∠CDE即可解题.【详解】解:过点D作DF⊥AC于F,∵,∴DF=3,∵,∴四边形DFCE是矩形,CE=DF=3,在Rt△DEC中,tan∠CDE==,∵∠ACD=∠CDE,∴=.【点睛】本题考查了三角函数的正切值求值,矩形的性质,中等难度,根据角平分线证明∠ACD=∠CDE是解题关键.17、【分析】设,得,根据旋转的性质得,∠1=30°,分别求得,,继而求得答案.【详解】如图,AB与CD相交于G,过点E作EF⊥AC延长线于点F,设,∵∠ACB=90°,∠B=30°,∴,∴,根据旋转的性质知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案为:.【点睛】本题考查了旋转的性质以及锐角三角函数的知识,构建合适的辅助线,借助解直角三角形求解是解答本题的关键.18、(0,﹣5)【分析】要求抛物线与y轴的交点,即令x=0,解方程.【详解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,则抛物线y=﹣x2+2x﹣5与y轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与轴的交点坐标,正确掌握令或令是解题的关键.三、解答题(共66分)19、(1)5cm;(1)最大值是800cm1.【分析】(1)设剪掉的正方形的边长为x
cm,则AB=(40-1x)cm,根据盒子的底面积为484cm1,列方程解出即可;(1)设剪掉的正方形的边长为x
cm,盒子的侧面积为y
cm1,侧面积=4个长方形面积;则y=-8x1+160x,配方求最值.【详解】(1)设剪掉的正方形的边长为xcm,则(40﹣1x)1=900,即40﹣1x=±30,解得x1=35(不合题意,舍去),x1=5;答:剪掉的正方形边长为5cm;(1)设剪掉的正方形的边长为xcm,盒子的侧面积为ycm1,则y与x的函数关系式为y=4(40﹣1x)x,即y=﹣8x1+160x,y=﹣8(x﹣10)1+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm1.【点睛】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.20、(1)且;(2),.【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;
(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.【详解】(1)∵.解得且.(2)∵为正整数,∴.∴原方程为.解得,.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.21、开口向下,对称轴为直线,顶点【解析】试题分析:先通过配方法对二次函数的一般式进行配方成顶点式,再根据二次函数图象性质写出开口方向,对称轴,顶点坐标.试题解析:,=,=,开口向下,对称轴为直线,顶点.22、x1=5,x2=1.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2-10x+25=2(x-5),
(x-5)2-2(x-5)=0,
(x-5)(x-5-2)=0,
x-5=0,x-5-2=0,
x1=5,x2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.23、2.4秒或秒【分析】设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6-t)cm,BQ=2tcm,分两种情况:①当时,②当时,分别解方程即可得出结果.【详解】解:设t秒后,以Q,B,P为顶点的三角形与△ABC相似,则PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,∴分两种情况:①当时,即,解得:t=2.4;②当时,即,解得:t=;综上所述:2.4秒或秒时,以Q,B,P为顶点的三角形与△ABC相似.【点睛】本题主要考查了相似三角形的判定,掌握相似三角形的判定是解题的关键.24、x1=5,x2=﹣1.【解析】试题分析:移项后,用因式分解法解答即可.试题解析:解:∵x2﹣5=4x,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,∴x﹣5=0或者x+1=0,∴x1=5,x2=﹣1.25、1200
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度光伏发电项目合作合同研究2篇
- 2024年度奢侈品买卖与代理合同
- 2024中国石化金陵石化分公司毕业生招聘40人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电力建设集团河北工程限公司招聘70人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信江西公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国海油春季校园招聘笔试易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度船舶制造起重机安装调试合同
- 2024中国出口信用保险公司宁波分公司劳务派遣员工招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度橱柜企业与物流公司仓储运输合同
- 2024下半年江苏淮安市淮阴区招聘编外用工人员和部分国企人员16人易考易错模拟试题(共500题)试卷后附参考答案
- 关于设计阶段监理的控制手段、方法及措施_工程管理
- 小学《纸浆画》校本教材
- 方便面成品感官品评(课堂PPT)
- 马后炮化工论坛阀门的基础知识
- 市政工程施工工期定额(定稿)
- 涂层厚度检测记录(共10页)
- 心理统计学公式总结
- 最新最全安徽建设工程清单计价取费费率
- 高中文科数学基础知识汇总
- 第六章缝隙天线及微带天线
- 数字电子设计报告生理刺激反应时间测试仪
评论
0/150
提交评论