版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省简阳市简城区、镇金区2023-2024学年数学九年级第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm2.如图,已知是的直径,,则的度数为()A. B. C. D.3.下列运算中,计算结果正确的是()A.a4•a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b4.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个 B.16个 C.20个 D.25个5.如图,将的三边扩大一倍得到(顶点均在格点上),如果它们是以点为位似中心的位似图形,则点的坐标是()A. B. C. D.6.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=7.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是()A.91 B.126 C.127 D.1698.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.10.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)211.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.14.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.15.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.16.如图,直角三角形的直角顶点在坐标原点,若点在反比例函数的图像上,点在反比例函数的图像上,且,则_______.17.计算sin60°tan60°-cos45°cos60°的结果为______.18.如图,点、、在上,若,,则________.三、解答题(共78分)19.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)20.(8分)如图,在平面直角坐标系中,抛物线与轴交于点,点的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.⑴求这条抛物线对应的函数表达式;⑵当点在第一象限的抛物线上时,求与之间的函数关系式;⑶在⑵的条件下,当时,求的值.21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.22.(10分)(1)解方程:(2)某快递公司,今年三月份与五月份完成投递的快递总件数分别为万件和万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均増长率.23.(10分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.(1)求证:△ADC∽△APD;(2)求△APD的面积;(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断PMCN的值是否随着α的变化而变化?如果不变,请求出PM24.(10分)如图以的一边为直径作⊙,⊙与边的交点恰好为的中点,过点作⊙的切线交边于点.(1)求证:;(2)若,求的值.25.(12分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)26.如图,在中,是边上的高,且.
(1)求的度数;(2)在(1)的条件下,若,求的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.【详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE=AB=12cm,CF=DF=CD=9cm,
在Rt△OAE中,∵OA=15cm,AE=12cm,
∴OE=,
在Rt△OCF中,∵OC=15cm,CF=9cm,
∴OF=,
当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);
当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);
即AB和CD之间的距离为21cm或3cm.
故选:D.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.2、B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论.【详解】∵在⊙O中,∠E与∠B所对的弧是,∴∠E=∠B=40°,∵AE是⊙O的直径,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故选:B.【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键.3、C【分析】根据幂的运算法则即可判断.【详解】A、a4•a=a5,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(a3)2=a6,正确;D、(ab)3=a3b3,故此选项错误;故选C.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4、B【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:=0.2,解得:x=16,故选:B..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系5、D【分析】根据位似中心的定义作图即可求解.【详解】如图,P点即为位似中心,则P故选D.【点睛】此题主要考查位似中心,解题的关键是熟知位似的特点.6、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7、C【分析】由图形可知:第一层有1个花盆,第二层有1+6=7个花盆,第三层有1+6+12=19个花盆,第四层有1+6+12+18=37个花盆,…第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,要求第7层个数,由此代入求得答案即可.【详解】解:∵第一层有1个花盆,
第二层有1+6=7个花盆,
第三层有1+6+12=19个花盆,
第四层有1+6+12+18=37个花盆,
…
∴第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,
∴当n=7时,
∴花盆的个数是1+3×7×(7-1)=1.
故选:C.【点睛】此题考查图形的变化规律,解题关键在于找出数字之间的运算规律,利用规律解决问题.8、D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.9、B【解析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.10、C【解析】依据一元二次方程的定义解答即可.【详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.11、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是.故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.二、填空题(每题4分,共24分)13、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.14、.【分析】根据三角形的面积公式求出BC边上的高=3,根据△ADE∽△ABC,求出正方形DEFG的边长为2,根据等于高之比即可求出MN.【详解】解:作AQ⊥BC于点Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC边上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE边上的高为1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案为.【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大,作辅助线AQ⊥BC是解题的关键.15、3或【解析】分两种情况:与直线CD相切、与直线AD相切,分别画出图形进行求解即可得.【详解】如图1中,当与直线CD相切时,设,在中,,,,,;如图2中当与直线AD相切时,设切点为K,连接PK,则,四边形PKDC是矩形,,,,在中,,综上所述,BP的长为3或.【点睛】本题考查切线的性质、正方形的性质、勾股定理等知识,会用分类讨论的思想思考问题,会利用参数构建方程解决问题是关键.16、【分析】构造一线三垂直可得,由相似三角形性质可得,结合得出,进而得出,即可得出答案.【详解】解:过点作轴于点,过点作轴于点,,,,,又,,∴,,点在反比例函数的图像上,∴,,∴经过点的反比例函数图象在第二象限,故反比例函数解析式为:.即.故答案为:.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,掌握反比例函数中k的几何意义和构造一线三垂直模型得相似三角形,从而正确得出是解题关键.17、1【分析】直接利用特殊角的三角函数值分别代入求出答案.【详解】解:原式=1【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18、【分析】连接OB,先根据OA=OB计算出,再根据计算出,进而计算出,最后根据OB=OC得出即得.【详解】解:连接OB,如下图:∴∴,∵∴∴故答案为:【点睛】本题考查了圆的性质及等腰三角形的性质,解题关键是熟知同圆的半径相等,同弧所对的圆周角是圆心角的一半.三、解答题(共78分)19、(1);(2)此校车在AB路段超速,理由见解析.【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.20、(1);(2)当时,,当时,;(3)或.【分析】(1)由题意直接根据待定系数法,进行分析计算即可得出函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)由题意根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,即可得出答案.【详解】解:(1)由题意得,解得∴这条抛物线对应的函数表达式是.(2)当时,.∴点的坐标是.设直线的函数关系式为.由题意得解得∴直线的函数关系式为.∵PD∥x轴,∴.∴.当时,如图①,.当时,如图②,.(3)当时,,.∵,∴.解得(不合题意,舍去),.当时,,.∵,∴.解得(不合题意,舍去),.综上所述,当时,或.【点睛】本题考查二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴直线上点的纵坐标相等得出E点的纵坐标是解题关键;利用PE与DE的关系得出关于m的方程是解题的关键.21、解:(1)见解析(2)【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22、(1);(2)该快递公司投递总件数的月平均增长率为10%.【分析】(1)用因式分解法即可求解;(2)五月份完成投递的快递总件数=三月份完成投递的快递总件数×(1+x)2,进而列出方程,解方程即可.【详解】(1)∴∴4x-3=0或2x+1=0∴(2)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合题意舍去)答:该快递公司投递总件数的月平均增长率为10%.【点睛】此题主要考查了一元二次方程的应用---增长率问题,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.23、(1)见解析;(2)33;(3)不会随着α【解析】(1)先判断出△BCD是等边三角形,进而求出∠ADP=∠ACD,即可得出结论;
(2)求出PH,最后用三角形的面积公式即可得出结论;
(3)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.【详解】(1)证明:∵△ABC是直角三角形,点D是AB的中点,∴AD=BD=CD,∵在△BCD中,BC=BD且∠B=60°,∴△BCD是等边三角形,∴∠BCD=∠BDC=60°,∴∠ACD=90°-∠BCD=30°,∠ADE=180°-∠BDC-∠EDF=30°,在△ADC与△APD中,∠A=∠A,∠ACD=∠ADP,∴△ADC∽△APD.(2)由(1)已得△BCD是等边三角形,∴BD=BC=AD=2,过点P作PH⊥AD于点H,∵∠ADP=30°=90°-∠B=∠A,∴AH=DH=1,tanA=PHAH∴PH=33∴△APD的面积=12AD·PH=(3)PMCN的值不会随着α的变化而变化∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,在△MPD与△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△MPD∽△NCD,∴PMCN由(1)知AD=CD,∴PMCN由(2)可知PD=2AH,∴PD=23∴PMCN∴PMCN的值不会随着α的变化而变化【点睛】属于相似三角形的综合题,考查相似三角形的判定与性质,锐角三角函数,三角形的面积等,综合性比较强,对学生综合能力要求较高.24、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15314-2024精密工程测量规范
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷带答案(夺分金卷)
- 沥青混凝土运输协议(35篇)
- 农村丧事礼仪主持词
- 讲文明懂礼貌演讲稿600字(35篇)
- 2024年三人联合承包石油化工工程合同2篇
- 设备购销合同格式示例
- 设计服务合同印花税的办理流程及指南
- 诚信在诉讼中的承诺
- 货物运输安全合作协议
- (项目管理)项目管理硕士(MPM)项目
- 通风工程防排烟课程设计
- 输尿管结石病人护理查房
- 田间管理记录表
- 下肢缺血分级
- 初中生物总复习知识概要
- 概率论与数理统计电子教案
- 应用化学专业英语unit.ppt
- 欣赏跳圆舞曲的小猫
- 《土地资源保护法》PPT课件
- 质量通病、施工难点的预防及治理措施-
评论
0/150
提交评论