版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省江油市七校2023-2024学年数学九年级第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-22.如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个3.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切4.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1 B. C. D.5.顺次连结菱形各边中点所得到四边形一定是()A.平行四边形 B.正方形 C.矩形 D.菱形6.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为()A.4 B. C.5 D.7.如果将抛物线向右平移1个单位,那么所得新抛物线的顶点坐标是()A. B. C. D.8.如图,点在上,,则的半径为()A.3 B.6 C. D.129.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处10.已知反比例函数y=的图象上有三点A(4,y1),B(1.y1),c(,y3)则y1、y1、y3的大小关系为()A.y1>y1>y3 B.y1>y1>y3 C.y3>y1>y1 D.y3>y1>y1二、填空题(每小题3分,共24分)11.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An,将抛物线y=x2沿直线L:y=x向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,则顶点M2020的坐标为_____.12.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.13.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.14.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;15.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.16.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.17.=___18.汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是.汽车刹车后到停下来前进了______.三、解答题(共66分)19.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?20.(6分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)2020281520253020121330251520101020172426“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:频数分布表分组频数(单位:天)10≤x<15415≤x<20320≤x<25a25≤x<30b30≤x<352合计20请根据以上信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)求这20天访问王老师工作室的访问人次的平均数.21.(6分)在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.22.(8分)如图,已知二次函数的图象的顶点坐标为,直线与该二次函数的图象交于,两点,其中点的坐标为,点在轴上.是轴上的一个动点,过点作轴的垂线分别与直线和二次函数的图象交于,两点.(1)求的值及这个二次函数的解析式;(2)若点的横坐标,求的面积;(3)当时,求线段的最大值;(4)若直线与二次函数图象的对称轴交点为,问是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请求出此时点的坐标;若不存在,请说明理由.23.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为(元),请你分别用含的代数式来表示销售量(件)和销售该品牌玩具获得利润(元),并把结果填写在表格中:销售单价(元)销售量(件)销售玩具获得利润(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?24.(8分)如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.(1)求证:EF是⊙O的切线;(2)证明:∠CAD=∠CDF;(3)若∠F=30°,AD=,求⊙O的面积.25.(10分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它等5个方面进行问卷调(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题.(1)本次调查共抽取了学生人;(2)求本次调查中喜欢踢足球人数;(3)若甲、乙两位同学通过抽签的方式确定自己填报的课间活动,则两位同学抽到同一运动的概率是多少?26.(10分)(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.
参考答案一、选择题(每小题3分,共30分)1、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.2、A【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】抛物线开口向下,a<0,对称轴为直线x=1>0,a、b异号,因此b>0,与y轴交点为(0,3),因此c=3>0,于是abc<0,故结论①是正确的;由对称轴为直线x==1得2a+b=0,当x=﹣1时,y=a﹣b+c<0,所以a+2a+c<0,即3a+c<0,又a<0,4a+c<0,故结论②不正确;当y=3时,x1=0,即过(0,3),抛物线的对称轴为直线x=1,由对称性可得,抛物线过(2,3),因此方程ax2+bx+c=3的有两个根是x1=0,x2=2;故③正确;抛物线与x轴的一个交点(x1,0),且﹣1<x1<0,由对称轴为直线x=1,可得另一个交点(x2,0),2<x2<3,因此④是正确的;根据图象可得当x<0时,y随x增大而增大,因此⑤是正确的;正确的结论有4个,故选:A.【点睛】本题考查了二次函数的图象与性质,熟练运用二次函数的基本知识和正确运用数形结合思想是解答本题的关键.3、D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.4、D【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【详解】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故选:D.【点睛】本题考查解二次函数综合题,解题关键是根据题意可以写出平移后的函数解析式.5、C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【详解】如图,四边形ABCD是菱形,且E.
F.
G、H分别是AB、BC、CD、AD的中点,
则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.
故四边形EFGH是平行四边形,
又∵AC⊥BD,
∴EH⊥EF,∠HEF=90°,
∴边形EFGH是矩形.
故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.6、D【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可.【详解】绕点顺时针旋转后与重合四边形ABCD为正方形在中,故选D.【点睛】本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.7、C【分析】根据抛物线的平移规律得出平移后的抛物线的解析式,即可得出答案.【详解】解:由将抛物线y=3x2+2向右平移1个单位,得
y=3(x-1)2+2,
顶点坐标为(1,2),
故选:C.【点睛】本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.8、B【分析】连接OB、OC,如图,根据圆周角定理可得,进一步即可判断△OCB是等边三角形,进而可得答案.【详解】解:连接OB、OC,如图,则OB=OC,∵,∴,∴△OCB是等边三角形,∴OB=BC=6.故选:B.【点睛】本题考查了圆周角定理和等边三角形的判定和性质,属于基础题型,熟练掌握上述性质是解题关键.9、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.
故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.10、C【分析】把A、B、C的坐标分别代入y=,分别求出y1、y1、y2的值,从而得到它们的大小关系.【详解】解:把A(4,y1),B(1.y1),c(,y2)分别代入y=,得y1=,y1==,y2==所以y1<y1<y2.故选:C.【点睛】本题考查的知识点是根据反比例函数解析式自变量的值求函数值,比较基础.二、填空题(每小题3分,共24分)11、(4039,4039)【分析】根据抛物线的解析式结合整数点的定义,找出点An的坐标为(n,n2),设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x-a)2+a,由点An的坐标利用待定系数法,即可求出a值,将其代入点Mn的坐标即可得出结论.【详解】∵抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…,An,…,∴点An的坐标为(n,n2).设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x﹣a)2+a,∵点An(n,n2)在抛物线y=(x﹣a)2+a上,∴n2=(n﹣a)2+a,解得:a=2n﹣1或a=0(舍去),∴Mn的坐标为(2n﹣1,2n﹣1),∴M2020的坐标为(4039,4039).故答案为:(4039,4039).【点睛】本题考查了二次函数图象与几何变换、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,根据点An的坐标利用待定系数法求出a值是解题的关键.12、1【解析】连接BD.根据圆周角定理可得.【详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.13、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14、6【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.15、或14【解析】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长.【详解】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键.16、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.17、【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式==.故答案为:.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18、6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s的值.【详解】解:根据二次函数解析式=-6(t²-2t+1-1)=-6(t-1)²+6可知,汽车的刹车时间为t=1s,当t=1时,=12×1-6×1²=6(m)故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键.三、解答题(共66分)19、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1)7、1,直方图见解析;(2)20人次.【分析】(1)根据题目所给数据即可得出a、b的值,从而补全直方图;
(2)根据平均数的概念列式求解可得.【详解】解:(1)由题意知20≤x<25的天数a=7,25≤x<30的天数b=1,补全直方图如下:故答案为:7、1.(2)这20天访问王老师工作室的访问人次的平均数为:答:这20天访问王老师工作室的访问人次的平均数为20人次.【点睛】此题考查了频数(率)分布直方图,平均数,正确识别统计图及统计表中的数据是解本题的关键.21、2.6cm【分析】先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.【详解】解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.【点睛】本题考查了角平分线的性质定理,属于简单题,正确作出辅助线是解题关键.22、(1),;(2);(3)DE的最大值为;(4)存在,点的坐标为或()或(,0)【分析】(1)根据直线经过点A(3,4)求得m=1,根据二次函数图象的顶点坐标为M(1,0),且经过点A(3,4)即可求解;
(2)先求得点的坐标,点D的坐标,根据三角形面积公式即可求解;(3)由题意得,则根据二次函数的性质即可求解;(4)分两种情况:D点在E点的上方、D点在E点的下方,分别求解即可.【详解】(1)∵直线经过点,
∴,∴,
∵二次函数图象的顶点坐标为,
∴设二次函数的解析式为:
∵抛物线经过,∴,解得:,
∴二次函数的解析式为:;
(2)把代入得,
∴点的坐标为,
把代入得,
∴点D的坐标为(2,3),
∴,
∴;
(3)由题意得,
∴∴当(属于范围)时,DE的最大值为;
(4)满足题意的点P是存在的,理由如下:∵直线AB:,当时,,∴点N的坐标为(1,2),∴,
∵要使四边形为平行四边形只要,
∴分两种情况:
①D点在E点的上方,则
,
∴,
解得:(舍去)或;
②D点在E点的下方,则
,∴,解得:或综上所述,满足题意的点P是存在的,点P的坐标为或()或(,0).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23、(1)1000-10x,-10x2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元.【分析】(1)根据销售单价每涨1元,就会少售出10件玩具,再列出销售量y(件)和销售玩具获得利润(元)的代数式即可;(2)令(1)所得销售玩具获得利润(元)的代数式等于10000,然后求得x即可;(3)、先求出x的取值范围,然后根据(1)所得销售玩具获得利润(元)的代数式结合x的取值范围,运用二次函数求最值的方法求出最大利润即可.【详解】解:(1)∵根据销售单价每涨1元,就会少售出10件玩具,∴销售量y(件)为:600-10(x-40)=1000-10x;销售玩具获得利润(元)为:[600-10(x-40)](x-30)=-10x2+1300x-30000故答案为:1000-10x,-10x2+1300x-30000;(2)令-10x2+1300x-30000=10000,解得:x=50或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)根据题意得:解得:44≤x≤46由w=-10x2+1300x-30000=-10(x-65)2+12250∵-10<0,对称轴是直线x=65.∴当44≤x≤46时,w随增大而增大∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.24、(1)见解析;(2)见解析;(3)π【分析】(1)连接OD,AD,证点D是BC的中点,由三角形中位线定理证OD∥AB,可推出∠ODF=90°,即可得到结论;(2)由OD=OC得到∠ODC=∠OCD,由∠CAD+∠OCD=90°和∠CDF+∠ODC=90°即可推出∠CAD=∠CDF;(3)由∠F=30°得到∠DOC=60°,推出∠DAC=30°,在Rt△ADC中,由锐角三角函数可求出AC的长,推出⊙O的半径,即可求出⊙O的面积.【详解】解:(1)证明:如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,即AD⊥BC,又AB=AC,∴BD=CD,又AO=CO,∴OD∥AB,又FE⊥AB,∴FE⊥OD,∴EF是⊙O的切线;(2)∵OD=OC,∴∠ODC=∠OCD,∵∠ADC=∠ODF=90°,∴∠CAD+∠OCD=90°,∠CDF+∠ODC=90°,∴∠CAD=∠CDF;(3)在Rt△ODF中,∠F=30°,∴∠DOC=90°﹣30°=60°,∵OA=OD,∴∠OAD=∠ODA=∠DOC=30°,在Rt△ADC中,AC===2,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年离职研究者专利权让与合同
- 幼儿园工作总结播撒爱心收获阳光
- 2025版建筑工程居间合同范本3篇
- 物流行业的保安工作总结
- 2024年纺织行业供销合同样本
- 2024年版的智能物流系统建设与运营合同
- 2024年行政合同法律适用研究:行政优先权的法律地位3篇
- 矿山施工索赔合同
- 剧院谢幕承诺观众安静退场
- 投资决策审核流程
- 2024年人教版初二道德与法治上册期末考试卷(附答案)
- 2024至2030年中国工控安全行业发展状况及投资潜力分析报告
- 文件袋、档案袋密封条模板
- 校本课程《典籍里的中国》教案
- 四年级上册信息技术教案-9演示文稿巧编辑 |人教版
- 2022年人力资源管理各专业领域必备知识技能
- 租赁(出租)物品清单表
- 提高聚氯乙烯卷材地面一次验收合格率
- 甲型H1N1流感防治应急演练方案(1)
- LU和QR分解法解线性方程组
- 漏油器外壳的落料、拉深、冲孔级进模的设计【毕业论文绝对精品】
评论
0/150
提交评论