沈阳市第一三四中学2023年高一数学第一学期期末学业质量监测模拟试题含解析_第1页
沈阳市第一三四中学2023年高一数学第一学期期末学业质量监测模拟试题含解析_第2页
沈阳市第一三四中学2023年高一数学第一学期期末学业质量监测模拟试题含解析_第3页
沈阳市第一三四中学2023年高一数学第一学期期末学业质量监测模拟试题含解析_第4页
沈阳市第一三四中学2023年高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沈阳市第一三四中学2023年高一数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.某几何体的三视图如图所示(图中小正方形网格的边长为),则该几何体的体积是A. B.C. D.2.()A. B.C. D.13.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)4.已知幂函数的图象过点,则该函数的解析式为()A. B.C. D.5.已知,则直线ax+by+c=0与圆的位置关系是A.相交但不过圆心 B.相交且过圆心C.相切 D.相离6.下列四个图形中,不是以x为自变量的函数的图象是()A B.C. D.7.已知,,则a,b,c的大小关系为A. B.C. D.8.某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p(单位:毫克/升)与过滤时间t(单位:小时)之间的关系为(式中的e为自然对数的底数,为污染物的初始含量).过滤1小时后,检测发现污染物的含量减少了,要使污染物的含量不超过初始值的,至少还需过滤的小时数为()(参考数据:)A.40 B.38C.44 D.429.设向量不共线,向量与共线,则实数()A. B.C.1 D.210.的值为()A. B.C. D.11.已知函数,则使成立的x的取值范围是()A. B.C. D.12.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.写出一个值域为,在区间上单调递增的函数______14.已知关于不等式的解集为,则的最小值是___________.15.设函数,若关于的不等式的解集为,则__________16.已知函数的零点为1,则实数a的值为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设,.(1)求的值;(2)求与夹角的余弦值.18.已知函数.(1)求函数的周期和单调递减区间;(2)将的图象向右平移个单位,得到的图象,已知,,求值.19.已知函数()用五点法作出在一个周期上的简图.(按答题卡上所给位置作答)()求在时的值域20.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围21.设,其中(1)若函数的图象关于原点成中心对称图形,求的值;(2)若函数在上是严格减函数,求的取值范围22.已知角的顶点与原点重合,角的始边与轴的非负半轴重合,并满足:,且有意义.(1)试判断角的终边在第几象限;(2)若角的终边上一点,且为坐标原点),求的值及的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】利用已知条件,画出几何体的直观图,利用三视图的数据求解几何体的体积即可【详解】由题意可知几何体的直观图如图:是直四棱柱,底面是直角梯形,上底为:1,下底为2,高为2,棱柱的高为2,几何体的体积为:V6故选A【点睛】本题考查几何体的直观图与三视图的关系,考查空间想象能力以及计算能力2、B【解析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【详解】由可知,故选:B3、C【解析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【点睛】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.4、C【解析】设出幂函数的解析式,根据点求得解析式.【详解】设,依题意,所以.故选:C5、A【解析】∵2a2+2b2=c2,∴a2+b2=.∴圆心(0,0)到直线ax+by+c=0的距离d=<2,∴直线ax+by+c=0与圆x2+y2=4相交,又∵点(0,0)不在直线ax+by+c=0上,故选A点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系(2)代数法:联立方程之后利用Δ判断(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题6、C【解析】根据函数中每一个自变量有且只有唯一函数值与之对应,结合函数图象判断符合函数定义的图象即可.【详解】由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C7、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题8、A【解析】由题意,可求解,解不等式即得解【详解】根据题设,得,∴,所以;由,得,两边取10为底对数,并整理得,∴,因此,至少还需过滤40小时故选:A9、A【解析】由向量共线定理求解【详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A10、B【解析】由诱导公式可得,故选B.11、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.12、C【解析】根据题意即可算出每个直角三角形面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【点睛】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】综合考虑值域与单调性即可写出满足题意的函数解析式.【详解】,理由如下:为上的减函数,且,为上的增函数,且,,故答案为:14、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:15、【解析】根据不等式的解集可得、、为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于满足,即,可得,所以,,所以,方程的两根分别为、,而可化为,即,所以,方程的两根分别为、,,且不等式解集为,所以,,解得,则,因此,.故答案为:.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解、、分别为方程、的根,而两方程含有公共根,进而可得出关于实数的等式,即可求解.16、【解析】利用求得的值.【详解】由已知得,即,解得.故答案为:【点睛】本小题主要考查函数零点问题,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)-2;(2).【解析】(1),,所以;(2)因为,所以代值即可得与夹角的余弦值.试题解析:(1)(2)因为,,所以.18、(1),(2)【解析】(1)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先根据三角函数的平移变换规则求出的解析式,根据,得到,再根据同角三角函数的基本关系求出,最后根据两角和的余弦公式计算可得;【小问1详解】解:∵,即,所以函数的最小正周期,令,解得.故函数的单调递减区间为.【小问2详解】解:由题意可得,∵,∴,∵,所以,则,因此.19、(1)见解析;(2)值域为.【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用,,,,描点作图即可;()当时,,可得,,从而可得结果.详解:(),,,,五点作图法的五点:,,,,()当时,,∴,此时,,即,,此时,,即,∴在时的值域为点睛:以三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)(2)【解析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整理,然后根据最大值为解出的值,最后根据正弦函数的性质求得函数的对称中心;(2)首先通过的取值范围来确定函数的范围,再根据不等式在上恒成立,推断出,最后计算得出结果【详解】因为的最大值为,所以,由得所以的对称中心为;(2)因为,所以即,因为不等式在上恒成立,所以即解得,的取值范围为【点睛】本题考查了向量的相关性质以及三角函数相关性质,主要考查了向量的乘法、三角函数的对称性、三角恒等变换、三角函数的值域等,属于中档题.的对称中心为21、(1);(2)【解析】(1)根据函数的图象关于原点成中心对称,得到是奇函数,由此求出的值,再验证,即可得出结果;(2)任取,根据函数在区间上是严格减函数,得到对任意恒成立,分离出参数,进而可求出结果.【详解】(1)因为函数的图象关于原点成中心对称图形,所以是奇函数,则,解得,此时,因此,所以是奇函数,满足题意;故;(2)任取,因为函数在上严格减函数,则对任意恒成立,即对任意恒成立,即对任意恒成立,因为,所以,则,所以对任意恒成立,又,所以,为使对任意恒成立,只需.即的取值范围是.【点睛】思路点睛:已知函数单调性求参数时,可根据单调性的定义,得到不等式,利用分离参数的方法分离出所求参数,得到参数大于(等于)或小于(等于)某个式子的性质,结合题中条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论