四川省巴中学市平昌县2023-2024学年数学八上期末质量检测试题含解析_第1页
四川省巴中学市平昌县2023-2024学年数学八上期末质量检测试题含解析_第2页
四川省巴中学市平昌县2023-2024学年数学八上期末质量检测试题含解析_第3页
四川省巴中学市平昌县2023-2024学年数学八上期末质量检测试题含解析_第4页
四川省巴中学市平昌县2023-2024学年数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省巴中学市平昌县2023-2024学年数学八上期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若二元一次方程所对应的直线是l,则下列各点不在直线l上的是()A. B. C. D.2.现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是()A.诚 B.信 C.自 D.由3.计算(﹣2x2y3)•3xy2结果正确的是()A.﹣6x2y6 B.﹣6x3y5 C.﹣5x3y5 D.﹣24x7y54.在平面直角坐标系中,若将点的横坐标乘以,纵坐标不变,可得到点,则点和点的关系是()A.关于轴对称B.关于轴对称C.将点向轴负方向平移一个单位得到点D.将点向轴负方向平移一个单位得到点5.计算:﹣64的立方根与16的平方根的和是()A.0 B.﹣8 C.0或﹣8 D.8或﹣86.下列命题是真命题的是()A.如果,那么B.三个内角分别对应相等的两个三角形相等C.两边一角对应相等的两个三角形全等D.如果是有理数,那么是实数7.8的平方根是()A.4 B.±4 C.2 D.8.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是()A.正方形 B.正六边形C.正八边形 D.正十二边形9.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.40° B.45° C.50° D.60°10.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短 B.垂线段最短C.两直线平行,内错角相等 D.三角形具有稳定性11.下列式子不正确的是()A. B. C. D.12.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6 C.a9÷a3=a3 D.(a3)2=a6二、填空题(每题4分,共24分)13.如图,在中.是的平分线.为上一点,于点.若,,则的度数为__________.14.已知,,则的值为____.15.按如图的运算程序,请写出一组能使输出结果为3的、的值:__________.16.已知一个三角形的三个内角度数之比为2:3:5,则它的最大内角等于_____度.17.如图,平行四边形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DE+DF的长度为_________.18.如图,点D、E分别在线段AB、AC上,且AD=AE,若由SAS判定,则需要添加的一个条件是_________.三、解答题(共78分)19.(8分)已知与成正比例,且当时,.(1)求与的函数表达式;(2)当时,求的取值范围.20.(8分)寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?21.(8分)已知某一次函数的图象如图所示.(1)求这个一次函数的解析式.(2)请直接写出该直线关于y轴对称的直线解析式.22.(10分)如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A1处,经过测量A1C=2m,求弯折点B与地面的距离.23.(10分)如图,中,.(1)在边求作一点,使点到的距离等于(尺规作图,保留作图痕迹);(2)计算(1)中线段的长.24.(10分)问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.25.(12分)某校为了解学生对“安全常识”的掌握程度,随机抽取部分学生安全知识竞赛的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.图中A表示“不了解”,B表示“了解很少”、C表示“基本了解”,D表示“非常了解”.请根据统计图所提供的信息解答下列问题:(1)被调查的总人数是人,扇形统计图中A部分所对应的扇形圆心角的度数为度;(2)补全条形统计图;(3)若该校共有学生1500人,请根据上述调查结果,估计该校学生中达到“基本了解”和“非常了解”共有人.26.阅读下面的证明过程,在每步后的横线上填写该步推理的依据,如图,,,是的角平分线,求证:.证明:是的角平分线()又()()()()又()()()

参考答案一、选择题(每题4分,共48分)1、B【解析】将各点横坐标看作x的值,纵坐标看作y的值,然后代入方程中,如果这组数值是方程的解,则该点在对应的直线上,否则亦然。【详解】解:因为都是方程的解,故点,,,在直线l上,不是二元一次方程的解,所以点不在直线l上.故选B.【点睛】本题考查了一次函数与二元一次方程组的关系,根据直线上点的坐标特征进行验证即可,比较简单.2、D【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的概念可知“由”是轴对称图形,故选:D.【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3、B【解析】根据单项式乘单项式法则直接计算即可.【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,故选:B.【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.4、B【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点是(-x,y),据此解答本题即可.【详解】解:∵在直角坐标系中的横坐标乘以,纵坐标不变,∴的坐标是(-1,2),∴和点关于y轴对称;故选:B.【点睛】本题考查的是平面直角坐标系中关于坐标轴对称的两点坐标之间的关系:关于纵坐标对称,则纵坐标不变,横坐标互为相反数.5、C【分析】由题意得,﹣64的立方根为﹣4,16的平方根为±4,再计算它们的和即可.【详解】解:由题意得:﹣64的立方根为﹣4,16的平方根为±4,∴﹣4+4=0或﹣4-4=-1.故选:C.【点睛】此题考查立方根的定义和平方根的定义,注意:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根.6、D【分析】根据绝对值的意义、全等三角形的判定、实数的分类等知识对各选项逐一进行判断即可.【详解】A.如果,那么,故A选项错误;B.三个内角分别对应相等的两个三角形不一定全等,故B选项错误;C.两边一角对应相等的两个三角形不一定全等,当满足SAS时全等,当SSA时不全等,故C选项错误;D.如果是有理数,那么是实数,正确,故选D.【点睛】本题考查了真假命题的判断,涉及了绝对值、全等三角形的判定、实数等知识,熟练掌握和灵活运用相关知识是解题的关键.7、D【分析】直接根据平方根的定义进行解答即可解决问题.【详解】∵(±2)2=8,∴8的平方根是±2.故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8、C【解析】根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.【详解】A.正方形的每个内角是,∴能密铺;B.正六边形每个内角是,∴能密铺;C.正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;D.正十二边形每个内角是∴能密铺.故选:C.【点睛】本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.9、D【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】连接AC并延长交EF于点M.∵,∴,∵,∴,∴,∵,∴,故选D.【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.10、D【分析】根据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D.【点睛】此题考查三角形的性质,关键是根据三角形的稳定性解答.11、D【分析】利用同底数幂的乘法运算法则、零次幂性质、积的乘方运算法则以及幂的乘方运算法则逐一计算,然后再加以判断即可.【详解】A:,选项正确;B:,选项正确;C:,选项正确;D:,选项错误;故选:D.【点睛】本题主要考查了整数指数幂与运算,熟练掌握相关方法是解题关键.12、D【解析】A、a2-a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确,故选D.二、填空题(每题4分,共24分)13、65°【分析】先求出∠ADB的度数,继而根据三角形外角的性质求出∠CAD的度数,再根据角平分线的定义求出∠BAC的度数,进而根据三角形内角和定理求解即可得.【详解】∵EF⊥BC,∴∠EFD=90°,又∵∠DEF=15°,∴∠ADB=90°-∠DEF=90°-15°=75°,∵∠C=35°,∠ADB=∠C+∠CAD,∴∠CAD=75°-35°=40°,∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°,故答案为:65°.【点睛】本题考查了三角形内角和定理,三角形外角的性质,直角三角形两锐角互余,角平分线的定义等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.14、2020【分析】已知等式利用完全平方公式化简整理即可求出未知式子的值.【详解】∵,∴故答案是:【点睛】本题考查了完全平方公式,熟练掌握公式是解题的关键.15、,.【分析】根据运算程序列出方程,取方程的一组正整数解即可.【详解】根据题意得:,当时,.故答案为:,.【点睛】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.16、1【分析】利用三角形的内角和定理即可得.【详解】设最小角的度数为2x,则另两个角的度数分别为3x,5x,其中5x为最大内角由三角形的内角和定理得:解得:则故答案为:1.【点睛】本题考查了三角形的内角和定理、一元一次方程的几何应用,依据题意正确建立方程是解题关键.17、4【分析】利用平行四边形的性质得出AD∥BC,进而得出∠AEB=∠CBF,再利用角平分线的性质得出∠ABF=∠CBF,进而得出∠AEB=∠ABF,即可得出AB=AE,同理可得:BC=CF,即可得出答案.【详解】∵平行四边形ABCD,

∴AD∥BC,

∴∠AEB=∠CBF,

∵BE平分∠ABC,

∴∠ABF=∠CBF,

∴∠AEB=∠ABF,

∴AB=AE,

同理可得:BC=CF,

∵AB=3cm,BC=5cm,

∴AE=3cm.CF=5cm,

∴DE=5-3=2cm,DF=5-3=2cm,

∴DE+DF=2+2=4cm,

故答案为:4cm.【点睛】此题考查了平行四边形的性质,角平分线的性质,得出AB=AE,BC=CF是解题关键.18、【分析】题目中已给出一组对边和一个公共角,再找到公共角的另一组对边即可.【详解】在和中,故答案为:.【点睛】本题主要考查用SAS证明三角形全等,掌握全等三角形的判定方法是解题的关键.三、解答题(共78分)19、(1)y=2x-4;(2)-6<y<1.【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;

(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),

把x=1,y=-2代入y=k(x-2),

得k(1-2)=-2,解得:k=2,

所以解析式为:y=2(x-2)=2x-4;

(2)把x=-1,x=2分别代入y=2x-4,

可得:y=-6,y=1,∵y=2x-4中y随x的增大而增大,

∴当-1<x<2时,y的范围为-6<y<1.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.20、购买一个足球50元,一个篮球80元【分析】设购买一个足球需要x元,购买一个篮球需要y元,然后根据题意,列出二元一次方程组即可求出结论.【详解】解:设购买一个足球需要x元,购买一个篮球需要y元,根据题意得解得,∴购买一个足球需要50元,购买一个篮球需要80元.【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.21、(1);(2)【分析】(1)用待定系数法即可求解;(2)先找到(2,0)关于y轴的对称点,然后利用待定系数法即可求解.【详解】解:(1)设一次函数的解析式为:y=kx+b据图可知:直线经过(0,3)和(2,0)两点∴解得:∴一次函数的解析式为:(2)(2,0)关于y轴的对称点为(-2,0)设一次函数的解析式为:y=mx+n直线经过(0,3)和(-2,0)两点∴解得:该直线关于y轴对称的直线解析式为:【点睛】本题主要考查待定系数法求一次函数的解析式,掌握待定系数法是解题的关键.22、弯折点B与地面的距离为米【分析】设BC=xm,则AB=A1B=(4﹣x)m,在Rt△A1BC中利用勾股定理列出方程22+x2=(4﹣x)2即可求解.【详解】由题意得,AB=A1B,∠BCA=90°,设BC=xm,则AB=A1B=(4﹣x)m,在Rt△A1BC中,A1C2+BC2=A1B2,即:22+x2=(4﹣x)2,解得:x=,答:弯折点B与地面的距离为米.【点睛】本题考查勾股定理,解题的关键是掌握勾股定理的应用.23、(1)见解析;(2)1【分析】(1)根据角平分线上的点到角的两边的距离相等可知,作出∠A的平分线即可;(2)设,然后用表示出DB、DE、BF,利用勾股定理得到有关的方程,解之即可.【详解】(1)如图所示:(2)设,作于,如图所示:则,∵,∴,∴,∵∴,解得,即长为1.【点睛】此题考查了尺规作图角平分线以及勾股定理的运用,解题关键是利用其列出等量关系.24、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.(3)判断:(2)中的结论不成立.证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论