四川省泸州市龙马潭区天立学校2023-2024学年数学高一上期末质量跟踪监视试题含解析_第1页
四川省泸州市龙马潭区天立学校2023-2024学年数学高一上期末质量跟踪监视试题含解析_第2页
四川省泸州市龙马潭区天立学校2023-2024学年数学高一上期末质量跟踪监视试题含解析_第3页
四川省泸州市龙马潭区天立学校2023-2024学年数学高一上期末质量跟踪监视试题含解析_第4页
四川省泸州市龙马潭区天立学校2023-2024学年数学高一上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市龙马潭区天立学校2023-2024学年数学高一上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知a,b为实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知,,则()A. B.C. D.3.已知偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.4.2022年北京冬奥会将于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬奥会新增7个小项目,女子单人雪车为其中之一.下表是某国女子单人雪车集训队甲、乙两位队员十轮的比赛成绩,则下列说法正确的是()队员比赛成绩第一轮第二轮第三轮第四轮第五轮第六轮第七轮第八轮第九轮第十轮甲1分51秒741分51秒721分51秒751分51秒801分51秒901分51秒811分51秒721分51秒941分51秒741分51秒71乙1分51秒701分51秒801分51秒831分51秒831分51秒801分51秒841分51秒901分51秒721分51秒901分51秒91A.估计甲队员的比赛成绩的方差小于乙队员的比赛成绩的方差B.估计甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数C.估计甲队员的比赛成绩的平均数大于乙队员的比赛成绩的平均数D.估计甲队员的比赛成绩的中位数大于乙队员的比赛成绩的中位数5.函数,则A. B.4C. D.86.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则7.若关于的不等式的解集为,则函数在区间上的最小值为()A. B.C. D.8.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.49.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|10.设,,且,则A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数若函数有三个不同的零点,且,则的取值范围是____12.函数在区间上单调递增,则实数的取值范围_______.13.计算:________.14.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________15.已知,若方程有四个根且,则的取值范围是______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数.(1)判断的奇偶性,并证明;(2)判断的单调性,并用定义加以证明;(3)若,求实数的取值范围.17.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完(1)写出利润(万元)关于年产量x(千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?18.已知,,(1)求和;(2)求角的值19.某单位安装1个自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积x(单位:平方米)成正比,比例系数为0.1,为了保证正常用水,安装后采用净水装置净水和自来水公司供水互补的用水模式.假设在此模式下,安装后该单位每年向自来水公司缴纳水费为,记y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和(1)写出y关于x的函数表达式;(2)求x为多少时,y有最小值,并求出y的最小值20.已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数a的取值范围.21.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由充分条件、必要条件的定义及对数函数的单调性即可求解.【详解】解:因为,所以在上单调递减,当时,和不一定有意义,所以“”推不出“”;反之,,则,即,所以“”可推出“”.所以“”是“”的必要不充分条件.故选:B.2、C【解析】求出集合,,直接进行交集运算即可.【详解】,,故选:C【点睛】本题考查集合的交集运算,指数函数的值域,属于基础题.3、B【解析】由题得函数在上单调递减,且,再根据函数的图象得到,解不等式即得解.【详解】因为偶函数在上单调递增,且,所以在上单调递减,且,因为,所以,所以.故选:B【点睛】本题主要考查函数的单调性和奇偶性的应用,意在考查学生对这些知识的理解掌握水平.4、B【解析】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较.根据中位数、平均数、方差的计算方法求出中位数、平均数、方差比较即可得到答案【详解】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较,作茎叶图如图:由图可知,甲的成绩主要集中在70-75之间,乙的成绩主要集中在80-90之间,∴甲的成绩的平均数小于乙的成绩的平均数,故C错误;由图可知甲的成绩中位数为74.5,乙成绩的中位数为83,故甲队员的比赛成绩的中位数小于乙队员的比赛成绩的中位数,故D错误;甲队员比赛成绩平均数为:,乙队员比赛成绩平均数为:,∴甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数,故B正确;甲队员的比赛成绩的方差为:=57.41,乙队员的比赛成绩的方差为:=46.61,∴甲队员的比赛成绩的方差大于乙队员的比赛成绩的方差,故A错误故选:B5、D【解析】因为函数,所以,,故选D.【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出的值,进而得到的值.6、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D7、A【解析】由题意可知,关于的二次方程的两根分别为、,求出、的值,然后利用二次函数的基本性质可求得在区间上的最小值.【详解】由题意可知,关于的二次方程的两根分别为、,则,解得,则,故当时,函数取得最小值,即.故选:A.8、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B10、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.12、【解析】由对数真数大于零可知在上恒成立,利用分离变量的方法可求得,此时结合复合函数单调性的判断可知在上单调递增,由此可确定的取值范围.【详解】由题意知:在上恒成立,在上恒成立,在上单调递减,,;当时,单调递增,又此时在上单调递增,在上单调递增,满足题意;实数的取值范围为.故答案为:.13、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题14、【解析】由题意得15、【解析】作出函数的图象,结合图象得出,,得到,结合指数函数的性质,即可求解.【详解】由题意,作出函数的图象,如图所示,因为方程有四个根且,由图象可知,,可得,则,设,所以,因为,所以,所以,所以,即,即的取值范围是.故答案为:.【点睛】本题主要考查了函数与方程的综合应用,其中解答中作出函数的图象,结合图象和指数函数的性质求解是解答的关键,着重考查数形结合思想,以及推理与运算能力.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)奇函数,证明见解析(2)单调递增函数,证明见解析(3)【解析】(1)根据奇偶性的定义证明可得答案;(2)根据单调性定义,通过取值作差判断符号即可证明;(3)根据函数的单调性得,解不等式即可【小问1详解】证明:,,所以为奇函数.【小问2详解】函数在上为增函数.证明:函数的定义域为,,任取,且,则,∵,∴,∴,∴,即,∴∴函数在上为增函数.【小问3详解】因为,所以,由(2)知函数在上为增函数,所以,,∴的取值范围是.17、(1);(2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【解析】(1)分、两种情况讨论,结合利润销售收入成本,可得出年利润(万元)关于年产量(千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数的最大值及其对应的值,由此可得出结论.【小问1详解】由题意可知,当时,,当时,,故有;【小问2详解】当时,,即时,,当时,有,当且仅当时,,因为,所以时,,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.18、(1);(2)【解析】(1)根据以及同角三角函数基本关系,即可求出结果;(2)由得,进而可求出的值,再由两角差的正切公式即可求出结果.【详解】(1)已知,由,解得.(2)由得又,,【点睛】本题主要考查三角恒等变换,熟记同角三角函数基本关系以及两角差的正切公式即可,属于基础题型.19、(1)(2)当时,y有最小值为3.【解析】(1)根据y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和即可建立函数模型;(2)利用均值不等式即可求解.【小问1详解】解:由题意,y关于x的函数表达式为;【小问2详解】解:因为,当且仅当,即时等号成立.所以当时,y有最小值为3.20、(1)(2),【解析】(1)时,求出集合,,由此能求出;(2)推导出,求出集合,列出不等式能,能求出实数的取值范围【小问1详解】时,集合,;【小问2详解】若“”是“”的充分不必要条件,则,集合,,解得,实数的取值范围是,21、(1);(2).【解析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论