四川省凉山2023-2024学年高一数学第一学期期末统考试题含解析_第1页
四川省凉山2023-2024学年高一数学第一学期期末统考试题含解析_第2页
四川省凉山2023-2024学年高一数学第一学期期末统考试题含解析_第3页
四川省凉山2023-2024学年高一数学第一学期期末统考试题含解析_第4页
四川省凉山2023-2024学年高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省凉山2023-2024学年高一数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R2.若,,,则a,b,c的大小关系是A. B.C. D.3.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.4.在空间直角坐标系中,点关于平面的对称点是A. B.C. D.5.命题关于的不等式的解集为的一个充分不必要条件是()A. B.C. D.6.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.37.函数的单调递减区间为A., B.,C., D.,8.已知,,为正实数,满足,,,则,,的大小关系为()A. B.C. D.9.用区间表示不超过的最大整数,如,设,若方程有且只有3个实数根,则正实数的取值范围为()A B.C. D.10.已知,若,则()A. B.C. D.11.用二分法求方程的近似解时,可以取的一个区间是A. B.C. D.12.已知幂函数的图象过点,则的值为A. B.C. D.二、填空题(本大题共4小题,共20分)13.的值为______.14.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于415.设函数,则__________,方程的解为__________16.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.三、解答题(本大题共6小题,共70分)17.如图,在四棱锥中,底面ABCD为平行四边形,,平面底面ABCD,M是棱PC上的点.(1)证明:底面;(2)若三棱锥的体积是四棱锥体积的,设,试确定的值.18.如图,△ABC中,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.19.已知直线l的方程为.(1)求过点A(3,2),且与直线l垂直的直线l1方程;(2)求与直线l平行,且到点P(3,0)的距离为的直线l2的方程.20.设,,.(1)若,求;(2)若是的充分不必要条件,求的取值范围.21.已知函数是定义在上的奇函数,且.(1)确定函数的解析式并用定义证明在上是增函数(2)解不等式:.22.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题2、C【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案.【详解】由题意,根据实数指数函数的性质,可得,根据对数的运算性质,可得;故选C【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3、A【解析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A4、C【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为5、D【解析】根据三个二次式的性质,求得命题的充要条件,结合选项和充分不必要的判定方法,即可求解.【详解】由题意,命题不等式的解集为,即不等式的解集为,可得,解得,即命题的充要条件为,结合选项,可得,所以是的一个充分不必要条件.故选:D.6、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题7、D【解析】由题意得选D.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间;由求减区间8、D【解析】设,,,,在同一坐标系中作出函数的图象,可得答案.【详解】设,,,在同一坐标系中作出函数的图象,如图为函数的交点的横坐标为函数的交点的横坐标为函数的交点的横坐标根据图像可得:故选:D9、A【解析】由方程的根与函数交点的个数问题,结合数形结合的数学思想方法,作图观察y={x}的图象与y=﹣kx+1的图象有且只有3个交点时k的取值范围,即可得解.【详解】方程{x}+kx﹣1=0有且只有3个实数根等价于y={x}的图象与y=﹣kx+1的图象有且只有3个交点,当0≤x<1时,{x}=x,当1≤x<2时,{x}=x﹣1,当2≤x<3时,{x}=x﹣2,当3≤x<4时,{x}=x﹣3,以此类推如上图所示,实数k的取值范围为:k,即实数k的取值范围为:(,],故选A【点睛】本题考查了方程的根与函数交点的个数问题,数形结合的数学思想方法,属中档题10、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.11、A【解析】分析:根据零点存在定理进行判断详解:令,因为,,所以可以取的一个区间是,选A.点睛:零点存在定理的主要内容为区间端点函数值异号,是判断零点存在的主要依据.12、B【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可【详解】设幂函数的表达式为,则,解得,所以,则.故答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题二、填空题(本大题共4小题,共20分)13、11【解析】进行对数和分数指数幂的运算即可【详解】原式故答案为:1114、③⑤【解析】按照平均数、极差、方差依次分析各序号即可.【详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.15、①.1②.4或-2【解析】(1)∵,∴(2)当时,由可得,解得;当时,由可得,解得或(舍去)故方程的解为或答案:1,或16、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.三、解答题(本大题共6小题,共70分)17、(1)详见解析;(2).【解析】(1)利用面面垂直的性质定理,可得平面,然后利用线面垂直的判定定理即证;(2)由题可得,进而可得,即得.【小问1详解】∵,平面底面ABCD,∴,平面底面ABCD=AD,底面ABCD,∴平面,平面,∴PD,又,∴,,∴底面;【小问2详解】设,M到底面ABCD的距离为,∵三棱锥的体积是四棱锥体积的,∴,又,,∴,故,又,所以.18、(1);(2)【解析】根据旋转体的轴截面图,利用平面几何知识求得球的半径与长,再利用面积公式与体积公式计算即可.【详解】解:(1)连接,则,设,在中,,;(2),∴圆锥球.【点睛】本题考查旋转体的表面积与体积的计算,球的表面积,圆锥的体积.19、(1)(2)或【解析】(1)可设所求直线的方程为,将A(3,2)代入求得参数,即可得解;(2)可设所求直线方程为,根据点P(3,0)到直线的距离求得参数,即可得解.【小问1详解】解:可设所求直线的方程为,则有,解得,所以所求直线方程为;【小问2详解】解:可设所求直线方程为,则有,解得或,所以所求直线方程为或.20、(1)或;(2).【解析】(1)先得出集合A,利用并集定义求出,再由补集定义即可求出;(2)由题可得集合是集合的真子集,则可列出不等式组求出.【详解】解:(1)当时,,又,所以,所以或;(2)由是的充分不必要条件,可知集合是集合的真子集.又因为,,,所以,解得,当时,,符合要求;当时,,符合要求,所以实数的取值范围是.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含21、(1),证明见解析(2)【解析】(1)由题意可得,从而可求出,再由,可求出,从而可求出函数的解析式,然后利用单调性的定义证明即可,(2)由于函数为奇函数,所以将转化为,再利用函数为增函数可得,从而求得解集【小问1详解】因为函数是定义在上的奇函数,所以,即,得,所以,因为,所以,解得,所以,证明:任取,且,则,因为,所以,,,所以,即,所以在上是增函数【小问2详解】因为在上为奇函数,所以转化为,因为在上是增函数,所以,解得,所以不等式的解集为22、(1)(2)(3)【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论