泰安市泰山区2023-2024学年数学九上期末检测模拟试题含解析_第1页
泰安市泰山区2023-2024学年数学九上期末检测模拟试题含解析_第2页
泰安市泰山区2023-2024学年数学九上期末检测模拟试题含解析_第3页
泰安市泰山区2023-2024学年数学九上期末检测模拟试题含解析_第4页
泰安市泰山区2023-2024学年数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泰安市泰山区2023-2024学年数学九上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,阳光透过窗户洒落在地面上,已知窗户高,光亮区的顶端距离墙角,光亮区的底端距离墙角,则窗户的底端距离地面的高度()为()A. B. C. D.2.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°3.若2a=5b,则=(

)A. B. C.2 D.54.将0.000102用科学记数法表示为()A. B. C. D.5.已知,则代数式的值为()A. B. C. D.6.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4)C.(2,﹣1) D.(8,﹣4)7.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③ B.①③④ C.①②④ D.②③④8.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠19.如图,,垂足为点,,,则的度数为()A. B. C. D.10.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.关于x的分式方程有增根,则m的值为__________.12.如图,菱形的顶点C的坐标为,顶点A在x轴的正半轴上.反比例函数的图象经过顶点B,则k的值为__.13.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.14.如果将抛物线平移,顶点移到点P(3,-2)的位置,那么所得新抛物线的表达式为___________.15.已知2是关于的一元二次方程的一个根,则该方程的另一个根是________.16.如图,矩形的顶点,在反比例函数的图象上,若点的坐标为,,轴,则点的坐标为__.17.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是_____.18.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A、D的⊙O分别交AB、AC于点E、F,(1)求证:BC是⊙O切线;(2)设AB=m,AF=n,试用含m、n的代数式表示线段AD的长.20.(6分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1),以原点为位似中心,在原点的另一侧画出△A1B1C1,使=,并写出△A1B1C1各顶点的坐标.21.(6分)如图,△ABC的顶点都在方格线的交点(格点)上.(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.22.(8分)解方程:x2+4x﹣3=1.23.(8分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=1.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO=S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.24.(8分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.26.(10分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据光沿直线传播的原理可知AE∥BD,则∽,根据相似三角形的对应边成比例即可解答.【详解】解:∵AE∥BD∴∽∴∵,,∴解得:经检验是分式方程的解.故选:A.【点睛】本题考查了相似三角形的判定及性质,解题关键是熟知:平行于三角形一边的直线和其他两边或延长线相交,所截得的三角形与原三角形相似.2、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.3、B【分析】逆用比例的基本性质作答,即在比例里,两个外项的积等于两个内项的积.【详解】解:因为2a=5b,

所以a:b=5:2;所以=

故选B.【点睛】本题主要是灵活利用比例的基本性质解决问题.4、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4,

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、B【解析】试题分析:根据题意令a=2k,b=3k,.故选B.考点:比例的性质.6、B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.7、C【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设,,由函数图像利用△EBF面积列出方程组即可解决问题.③由,,得,设,,在中,由列出方程求出,即可判断.④求出即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点运动到点时用了2.5秒,运动到点时共用了4秒.故①正确.设,,由题意,解得,所以,,故②正确,,,,设,,在中,,,解得或(舍,,,,故③错误,,,,故④正确,故选:C.【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.8、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.9、B【解析】由平行线的性质可得,继而根据垂直的定义即可求得答案.【详解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故选B.【点睛】本题考查了垂线的定义,平行线的性质,熟练掌握相关知识是解题的关键.10、B【解析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.二、填空题(每小题3分,共24分)11、1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.12、1【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值.【详解】∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,

4=,解得:k=1.故答案为1.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.13、-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.14、【解析】抛物线y=−2x²平移,使顶点移到点P(3,-2)的位置,所得新抛物线的表达式为y=−2(x-3)²-2.故答案为y=−2(x-3)²-2.15、-1.【解析】设方程的另一个根为,由韦达定理可得:,即,解得.点睛:本题主要考查一元二次方程根与系数的关系,解决本题的关键是要熟练掌握一元二次方程根与系数的关系.16、.【分析】根据矩形的性质和点的坐标,即可得出的纵坐标为2,设,根据反比例函数图象上点的坐标特征得出,解得,从而得出的坐标为.【详解】点的坐标为,,,四边形是矩形,,轴,轴,点的纵坐标为2,设,矩形的顶点,在反比例函数的图象上,,,,故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得的纵坐标为2是解题的关键.17、【解析】把方程化为一般形式,利用根与系数的关系直接求解即可.【详解】把方程7x2-5=x+8化为一般形式可得7x2-x-13=0,

∵x1,x2是一元二次方程7x2-5=x+8的两个根,

∴x1+x2=.故答案是:.【点睛】主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.18、【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题考查几何概率,解题关键在于掌握运算法则.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OD,由AD为角平分线得到∠BAD=∠CAD,再由等边对等角得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,进而得到OD∥AC,得到OD与BC垂直,即可得证;

(2)连接DF,由(1)得到BC为圆O的切线,结合角度的运算得出∠CDF=∠DAF,进而得到∠AFD=∠ADB,结合∠BAD=∠DAF得到△ABD∽△ADF,由相似得比例,即可表示出AD;【详解】(1)证明:如图,连接OD,则OD为圆O的半径,∵AD平分∠BAC,∴∠BAD=∠CAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODC=∠C=90°即OD⊥BC,∴BC是⊙O切线.(2)连接DF,OF,由(1)知BC为圆O的切线,∴∠ODC=90°,∴∠ODF+∠CDF=90°,∴∠ODF=90°-∠CDF,∵OD=OF,∴∠ODF=∠OFD=,又∵∠DAF=,∴∠ODF=∴∠CDF=∠DAF又∵∠CDF+∠CFD=90°,∠DAF+∠CDA=90°,∴∠CDA=∠CFD,

∴∠AFD=∠ADB,

∵∠BAD=∠DAF,

∴△ABD∽△ADF,∴,则∵AB=m,AF=n,∴∴【点睛】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.20、画图见解析;点A1(-2,-6),B1(-8,-4),C1(-4,-2).【分析】根据题意利用画位似图形的作图技巧以原点为位似中心,以为位似比作图并结合图像写出△A1B1C1各顶点的坐标.【详解】解:利用画位似图形的作图技巧以原点为位似中心,以为位似比作图:因为=,△A1B1C1各顶点的坐标为原坐标A(1,3)、B(4,2)、C(2,1),横纵坐标互为相反数的2倍,即A1(-2,-6),B1(-8,-4),C1(-4,-2).【点睛】本题考查位似图形的作图,熟练掌握并利用画位似图形的作图技巧以及位似比进行作图分析是解题的关键.21、(1)答案见解析;(2)答案见解析;(3)(2,﹣3).【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用关于原点对称点的性质直接得出答案.【详解】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:△A″B″C″,即为所求;(3)将△ABC绕原点O旋转180°,A的对应点A1的坐标是(2,﹣3).【点睛】考点:1.-旋转变换;2.-平移变换.22、x1=﹣2+,x2=﹣2﹣【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;解方程即可.【详解】解:原式可化为x2+4x+4﹣7=1即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.23、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n),利用反比例函数图像上的点的坐标特征可求出m的值,之后进一步求出n的值,然后进一步求解即可;(2)根据三角形的面积公式与矩形的面积公式结合S△PAO=S四边形OABC即可进一步求出P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的总坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,4),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用两点间的距离公式可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用两点间的距离公式可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.【详解】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO=S四边形OABC,∴OA∙yP=OA∙OC,∴yP=OC=4.当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(3,0),点B的坐标为(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴点P1的坐标为(1,4).又∵P1Q1=AB=5,∴点Q1的坐标为(1,3);(ii)当BP=AB时,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴点P2的坐标为(3﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(3﹣2,﹣1).综上所述:点Q的坐标为(1,3)或(3﹣2,﹣1).【点睛】本题主要考查了反比例函数的综合运用,熟练掌握相关概念是解题关键.24、(1)∠ADE=30°;(2)∠ADE=30°,理由见解析;(3)【分析】(1)利用SAS定理证明△ABD≌△ACE,根据全等三角形的性质得到AD=AE,∠CAE=∠BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明△ADF∽△ACD,根据相似三角形的性质得到,求出AD的最小值,得到AF的最小值,求出CF的最大值.【详解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°,∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=6AF,∴AF=,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时AD=AB=3,∴AF最短===,∴CF最长=AC-AF最短=6-=.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定与性质等知识,解题的关键是正确寻找全等三角形、相似三角形解决问题,属于中考常考题型.25、(1)y=x2﹣2x﹣1;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(1)(,4)或(,4)或(1,﹣4).【分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论