天津市部分区2023-2024学年高一数学第一学期期末统考模拟试题含解析_第1页
天津市部分区2023-2024学年高一数学第一学期期末统考模拟试题含解析_第2页
天津市部分区2023-2024学年高一数学第一学期期末统考模拟试题含解析_第3页
天津市部分区2023-2024学年高一数学第一学期期末统考模拟试题含解析_第4页
天津市部分区2023-2024学年高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市部分区2023-2024学年高一数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R2.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.3.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.4.已知函数的图象与函数的图象关于直线对称,函数是满足的偶函数,且当时,,若函数有3个零点,则实数的取值范围是()A. B.C. D.5.在平行四边形ABCD中,E为AB中点,BD交CE于F,则=()A. B.C. D.6.光线由点P(2,3)射到直线上,反射后过点Q(1,1),则反射光线所在的直线方程为A. B.C. D.7.已知为第二象限角,则的值是()A.3 B.C.1 D.8.已知全集,集合,集合,则集合A. B.C. D.9.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a10.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.11.若函数恰有个零点,则的取值范围是()A. B.C. D.12.集合,,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________14.设集合,,若,则实数的取值范围是________15.已知函数和函数的图像相交于三点,则的面积为__________.16.当时,,则a的取值范围是________.三、解答题(本大题共6小题,共70分)17.已知函数,.设函数.(1)求函数的定义域;(2)判断奇偶性并证明;(3)当时,若成立,求x的取值范围.18.已知函数在闭区间()上的最小值为(1)求的函数表达式;(2)画出的简图,并写出的最小值19.(Ⅰ)设x,y,z都大于1,w是一个正数,且有logxw=24,logyw=40,logxyzw=12,求logzw(Ⅱ)已知直线l夹在两条直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段中点为P(0,1),求直线l的方程20.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.21.已知.(1)求的最小正周期;(2)求的单调增区间;(3)当时,求的值域.22.已知函数为奇函数,且(1)求a和的值;(2)若,求的值

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题2、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B3、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理4、B【解析】把函数有3个零点,转化为有3个不同根,画出函数与的图象,转化为关于的不等式组求解即可.【详解】由函数的图象与函数的图象关于直线对称,得,函数是最小正周期为2的偶函数,当时,,函数有3个零点,即有3个不同根,画出函数与的图象如图:要使函数与的图象有3个交点,则,且,即.∴实数的取值范围是.故选:B.5、A【解析】利用向量加法法则把转化为,再利用数量关系把化为,从而可表示结果.【详解】解:如图,∵平行四边形ABCD中,E为AB中点,∴,∴DF,∴,故选A【点睛】此题考查了向量加减法则,平面向量基本定理,难度不大6、A【解析】设点关于直线的对称点为,则,解得,即对称点为,则反射光线所在直线方程即:故选7、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.8、A【解析】,所以,故选A.考点:集合运算.9、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C10、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C11、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D12、B【解析】解不等式可求得集合,由交集定义可得结果.【详解】,,.故选:B.二、填空题(本大题共4小题,共20分)13、【解析】由题意得14、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:15、【解析】解出三点坐标,即可求得三角形面积.【详解】由题:,,所以,,所以,.故答案为:16、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)奇函数,证明见解析;(3).【解析】(1)根据对数函数真数大于0,建立不等式组求解即可;(2)根据奇函数的定义判断即可;(3)根据对数函数的单调性解不等式求解即可.【详解】(1)由,解得,所以函数的定义域为.(2)是奇函数.证明如下:,都有,∴是奇函数.(3)由可得,得,由对数函数的单调性得,解得解集为.18、(1)(2)见解析【解析】【试题分析】(1)由于函数的对称轴为且开口向上,所以按三类,讨论函数的最小值.(2)由(1)将分段函数的图象画出,由图象可判断出函数的最小值.【试题解析】(1)依题意知,函数是开口向上的抛物线,∴函数有最小值,且当时,下面分情况讨论函数在闭区间()上的取值情况:①当闭区间,即时,在处取到最小值,此时;②当,即时,在处取到最小值,此时;③当闭区间,即时,在处取到最小值,此时综上,的函数表达式为(2)由(1)可知,为分段函数,作出其图象如图:由图像可知【点睛】本题主要考查二次函数在动区间上的最值问题,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于二次函数的解析式是知道的,即开口方向和对称轴都知道,而题目给定定义域是含有参数的动区间,故需要对区间和对称轴对比进行分类讨论函数的最值.19、(Ⅰ)60;(Ⅱ)x+4y-4=0【解析】(Ⅰ)logxw=24,logyw=40,logxyzw=12,将对数式改写指数式,得到.进而得出.问题得解(Ⅱ)设直线与的交点分别为,.可得,由的中点为,可得,.将,代入即可求解【详解】(Ⅰ)∵logxw=24,logyw=40,logxyzw=12,将对数式改写为指数式,得到x24=w,y40=w,(xyz)12=w从而,z12===,那么w=z60,∴logzw=60(Ⅱ)设直线l与l1,l2的交点分别为A(x1,y1),B(x2,y2)则

(*)∵A,B的中点为P(0,1),∴x1+x2=0,y1+y2=2.将x2=-x1,y2=2-y1代入(*)得,解之得,,所以,kAB==-,所以直线l的方程为y=-x+1,即x+4y-4=0【点睛】本题考查了指数与对数的互化、直线交点、中点坐标公式,考查了推理能力与计算能力,属于基础题20、(Ⅰ);(Ⅱ)9.【解析】(Ⅰ)首先求得直线方程与坐标轴的交点,然后求解的值即可;(Ⅱ)由题意结合截距式方程和均值不等式的结论求解的最小值即可.【详解】(Ⅰ),令令,.(Ⅱ)设,则,,当时,的最小值.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误21、(1)(2),(3)【解析】(1)利用降幂公式等化简可得,结合周期公式可得结果;(2)由,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论