




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆乌鲁木齐市2023-2024学年高一数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.,则A.1 B.2C.26 D.102.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.3.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.4.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.5.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()A. B.C. D.6.30°的弧度数为()A. B.C. D.7.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为8.下列函数为奇函数的是A. B.C. D.9.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.10.已知函数与的图像关于对称,则()A.3 B.C.1 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的值域是________12.已知函数,若函数在区间内有3个零点,则实数的取值范围是______13.已知是定义在上奇函数,且函数为偶函数,当时,,则______14.函数的反函数为___________.15.若,,则______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)证明:;(2)若存在一个平行四边形的四个顶点都在函数的图象上,则称函数具有性质P,判断函数是否具有性质P,并证明你的结论;(3)设点,函数.设点B是曲线上任意一点,求线段AB长度的最小值17.已知,(1)分别求,的值;(2)若角终边上一点,求的值18.已知函数=(1)判断的奇偶性;(2)求在的值域19.设函数.(1)当时,若对于,有恒成立,求取值范围;(2)已知,若对于一切实数恒成立,并且存在,使得成立,求的最小值.20.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程21.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.2、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.3、C【解析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C4、C【解析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.5、A【解析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选A.考点:动点问题的函数图象;二次函数的图象.6、B【解析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【点睛】本题考查了将角度制化为弧度制,属于基础题.7、B【解析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.8、D【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D考点:函数的奇偶性9、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B10、B【解析】根据同底的指数函数和对数函数互为反函数可解.【详解】由题知是的反函数,所以,所以.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】求出的范围,再根据对数函数的性质即可求该函数值域.【详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.12、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题13、【解析】求出函数的周期即可求解.【详解】根据题意,为偶函数,即函数图象关于直线对称,则有,又由为奇函数,则,则有,即,即函数是周期为4的周期函数,所以,故答案为:14、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.15、【解析】利用指数的运算性质可求得结果.【详解】由指数的运算性质可得.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析;(2)函数具有性质P,证明见解析;(3).【解析】(1)直接利用对数的运算求解;(2)取函数图象上四个点,证明函数具有性质P;(3)设(或),求出,再换元利用二次函数求函数的最值得解.【小问1详解】解:【小问2详解】解:由(1)知,的图象关于点中心对称,取函数图象上两点,,显然线段CD的中点恰为点M;再取函数图象上两点,,显然线段EF的中点也恰为点M因此四边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形,所以函数具有性质P小问3详解】解:,则(或),则,记(或),则,记,则,所以,当,即时,17、(1)(2)-7【解析】(1)由的值以及的范围,利用同角三角函数的基本关系即可求的值,进而可得的值,利用两角和的正弦公式求.(2)利用三角函数的定义可求的值,利用正切的二倍角公式可求出的值,再由两角和的正切公式即可求解.【小问1详解】因为,,所以,所以,.【小问2详解】由三角函数的定义可得,由正切的二倍角公式可得,18、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为19、(1)(2)【解析】(1)据题意知,把不等式的恒成立转化为恒成立,设,则,根据二次函数的性质,求得函数的最大致,即可求解.(2)由题意,根据二次函数的性质,求得,进而利用基本不等式,即可求解.【详解】(1)据题意知,对于,有恒成立,即恒成立,因此,设,所以,函数在区间上是单调递减的,,(2)由对于一切实数恒成立,可得,由存在,使得成立可得,,,当且仅当时等号成立,【点睛】本题主要考查了恒成立问题的求解,以及基本不等式求解最值问题,其中解答中掌握利用分离参数法是求解恒成立问题的重要方法,再合理利用二次函数的性质,合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1)(2)【解析】【试题分析】(1)设所求直线方程为:,将点坐标代入,求得的值,即得所求.(2)求得中点坐标和直线交点的坐标,利用点斜式得到所求直线方程.【试题解析】(1)设与:平行的直线方程为:,将代入,得,解得,故所求直线方程是:(2)∵,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微生物检验技术的未来发展方向试题及答案
- 项目管理资格考试的多维度考察及试题答案
- 微生物检验技师证书考试的实践反思与试题
- 特许金融分析师考试股市分析试题及答案
- 2025年证券从业资格证考试完整试题及答案
- 2025年考试复习时应关注的知识点试题及答案
- 项目管理中的客户满意度提升策略试题及答案
- 学习风格与注册会计师考试成绩提升的关系分析试题及答案
- 一年级数学下册 四 牧童-认识图形教学设计 青岛版六三制
- 项目管理中的人际交往技巧试题及答案
- 2024年防范电信网络诈骗知识题库及答案(共100题)
- 第47 届世界技能大赛商品展示技术项目技术文件
- 13-1《林教头风雪山神庙》说课稿 2023-2024学年统编版高中语文必修下册
- (中级技能操作考核)消防设施操作员考试题库(全真题版)
- 《运输企业治本攻坚三年行动方案》
- 2024建筑资质股权转让中介协议
- 南京工业大学《民法》2022-2023学年第一学期期末试卷
- DB11∕T 1796-2020 文物建筑三维信息采集技术规程
- 【工程法规】王欣 教材精讲班课件 38-第6章-6.3-施工单位安全生产责任制度
- 四年级数学下册 第1讲 平移、旋转和轴对称学生版(知识梳理+典例分析+举一反三+阶梯训练)(苏教版)
- 部编人教版二年级下学期语文期中综合复习强化练习题〔有答案〕
评论
0/150
提交评论