版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省剑川县第一中学2023年高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.2.已知,则的最小值是()A.5 B.6C.7 D.83.设,,则的值为()A. B.C.1 D.e4.直三棱柱中,若,则异面直线与所成角的余弦值为A.0 B.C. D.5.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20136.若<α<π,化简的结果是()A. B.C. D.7.函数f(x)=的零点所在的一个区间是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)8.下列函数中哪个是幂函数()A. B.C. D.9.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件10.函数的单调递减区间是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若在上是减函数,则a的最大值是___________.12.已知函数,若,则_____13.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______14.函数的定义域为_________________________15.设函数,若互不相等的实数、、满足,则的取值范围是_________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图,根据直方图所提供的信息:(1)求出图中a的值;(2)求该班学生这个周末的学习时间不少于20小时的人数;(3)如果用该班学生周末的学习时间作为样本去推断该校高一年级全体学生周末的学习时间,这样推断是否合理?说明理由17.已知函数是定义在R上的奇函数,且当时,.(1)求函数的解析式;(2)若函数在区间上单调递增,求实数的取值范围.18.设函数(ω>0),且图象的一个对称中心到最近的对称轴的距离为(1)求在上的单调区间;(2)若,且,求sin2x0的值19.求值:(1)(2)已知,求的值20.已知圆的圆心在直线上,且经过圆与圆的交点.(1)求圆的方程;(2)求圆的圆心到公共弦所在直线的距离.21.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度)(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B2、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C3、A【解析】根据所给分段函数解析式计算可得;【详解】解:因为,,所以,所以故选:A4、A【解析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.5、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为6、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力7、B【解析】因为函数f(x)=2+3x在其定义域内是递增的,那么根据f(-1)=,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B考点:本试题主要考查了函数零点的问题的运用点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间8、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.9、B【解析】根据指数函数的性质求的解集,由充分、必要性的定义判断题设条件间的关系即可.【详解】由,则,所以“”是“”的充分不必要条件.故选:B10、A【解析】令,则有或,在上的减区间为,故在上的减区间为,选A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】求出导函数,然后解不等式确定的范围后可得最大值【详解】由题意,,,,,,,∴,的最大值为故答案为:【点睛】本题考查用导数研究函数的单调性,考查两角和与差的正弦公式,考查正弦函数的性质,根据导数与单调性的关系列不等式求解即可.12、-2020【解析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题13、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.14、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)15、【解析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【点睛】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)9(3)不合理,理由见解析【解析】(1)根据频率分布直方图中,小矩形面积和为求解即可;(2)首先求学习时间不少于20小时的频率,再根据样本容量乘以频率=人数,计算结果;(3)结合样本来自同一个班级,故不具有代表性.【小问1详解】解:因为频率分布直方图中,小矩形面积和为,所以,解得.【小问2详解】解:由图可知,该班学生周末的学习时间不少于20小时的频率为则40名学生中周末的学习时间不少于20小时的人数为【小问3详解】解:不合理,样本的选取只选在高一某班,不具有代表性17、(1);(2).【解析】(1)设,计算,再根据奇函数的性质,得,,即可得函数在R上的解析式;(2)作出函数的图像,若在区间上单调递增,结合函数图像,列关于的不等式组求解.详解】(1)设,则,所以又为奇函数,所以,于是时,,所以函数的解析式为(2)作出函数的图像如图所示,要使在上单调递增,结合的图象知,所以,所以的取值范围是.18、(1)单调增区间为,单调减区间为;(2).【解析】(1)化简得到,结合条件求出,再利用余弦函数的性质即得;(2)由题可得,,再利用差角公式即求.【小问1详解】∵,因为图象的一个对称中心到最近的对称轴的距离为,又,所以,因此,∴,当时,,∴由,得,函数单调递增,由,得,函数单调递减,所以函数单调增区间为,单调减区间为.【小问2详解】∵,且,∴,又,∴,∴.19、(1)0;(2)【解析】(1)由指数幂的运算性质及对数的运算性质可求解;(2)由诱导公式即同角三角函数关系可求解.【详解】(1)原式;(2)原式.20、(1);(2).【解析】(1)求出的坐标,然后求出的中垂线方程,然后求出圆心和半径即可;(2)两圆相减可得方程,然后利用点到直线的距离公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《室内设计课件》课件
- 《审计与管理》课件
- 《客房优化方案》课件
- 《诊断思路》课件
- (高频选择题50题)第2单元 社会主义制度的建立与社会主义建设的探索(解析版)
- 《相机的发展史》课件
- 《山东的旅游资产》课件
- 《职业健康教案》课件
- 《猪的采血技术》课件
- 2014年高考语文试卷(安徽)(空白卷)
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 征信知识测试题及答案
- 理想系列一体化速印机故障代码
- 现代电路技术——故障检测D算法
- 检验科各专业组上岗轮岗培训考核制度全6页
- 钣金与成型 其它典型成形
- 工程停止点检查管理(共17页)
- 爬架安装检查验收记录表1529
- 2021年全国烟草工作会议上的报告
评论
0/150
提交评论