整式的除法(第二课时)_第1页
整式的除法(第二课时)_第2页
整式的除法(第二课时)_第3页
整式的除法(第二课时)_第4页
整式的除法(第二课时)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章整式的乘除1.7整式的除法(第2课时)(多项式除以单项式)北师大版七年级下册授课时间:2020年3月16日

(14:30--15:00)授课教师:张玉海中卫市第六中学1.同底数幂的除法同底数幂相除,底数不变,指数相减。2.单项式与单项式相除的法则单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的因式。知识回顾am÷an=am-n(a≠0,m,n都是整数。你能计算下列各题吗?如果能,说说你的理由。探究新知(1)(ad+bd)÷d(2)(a2b+3ab)÷a(3)(xy3-2xy)÷xy方法1:利用乘除法的互逆探究方法小结(1)∵d·(a+b)=ad+bd∴(ad+bd)÷d=a+b(2)∵a·(ab+3b)=a2b+3ab∴(a2b+3ab)÷a=ab+3b(3)∵xy·(y2-2)=xy3-2xy∴(xy3-2xy)÷xy=y2-2(1)(ad+bd)÷d(2)(a2b+3ab)÷a(3)(xy3-2xy)÷xy方法2:利用类似分数约分的方法探究方法小结(1)(ad+bd)÷d

(1)(ad+bd)÷d(2)(a2b+3ab)÷a(3)(xy3-2xy)÷xy

=a+b(2)(a2b+3ab)÷a

=ab+3b(3)(xy3-2xy)÷xy

=y2-2

多项式除以单项式时,我们可以转化为单项式除以单项式的形式。探索新知多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。注意:(1)多项式的每一项分别除以单项式;(2)所得的商相加

;(3)千万不要漏项;例1、计算:应用新知:(1)(6ab+8b)÷2b(2)(27a3-15a2+6a)÷3a(3)(9x2y-6xy2)÷3xy解:(1)(6ab+8b)÷2b

=6ab÷2b+8b÷2b=3a+4(2)(27a3-15a2+6a)÷3a=27a3÷3a-15a2÷3a+6a÷3a=9a2-5a+2(3)(9x2y-6xy2)÷3xy=9x2y÷3xy-6xy2÷3xy=3x-2y例1、计算:应用新知:(1)(6ab+8b)÷2b(2)(27a3-15a2+6a)÷3a(3)(9x2y-6xy2)÷3xy解:

=-6x+2y-1你能说出上面题目错误的原因吗?试试看想一想,下列计算正确吗?应用新知:(1)(3x2y-6xy)÷6xy=0.5x(2)(5a3b-10a2b2-15ab3)÷(-5ab)=a2+2ab+3b2

例2、计算:应用新知:(1)[(x+1)(x+2)-2]÷x(2)[(3a+b)2-b2]÷a解:(1)[(x+1)(x+2)-2]÷x=[(x2+2x+x+2)-2]÷x=(x2+3x+2-2)÷x=(x2+3x)÷x=x2÷x+3x÷x=x+3(2)[(3a+b)2-b2]÷a=[(9a2+6ab+b2)-b2]÷a=(9a2+6ab+b2-b2)÷a=(9a2+6ab)÷a=9a2÷a+6ab÷a=9a+6b

做一做解:

÷4v

多项式与单项式相除的法则收获感悟

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。注意:(1)多项式的每一项分别除以单项式;(2)所得的商相加

;(3)千万不要漏项;课后作业:(1)书上P31随堂练习;(2)习题1.14知识技能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论