浙江省9+1高中联盟2024届高一上数学期末经典试题含解析_第1页
浙江省9+1高中联盟2024届高一上数学期末经典试题含解析_第2页
浙江省9+1高中联盟2024届高一上数学期末经典试题含解析_第3页
浙江省9+1高中联盟2024届高一上数学期末经典试题含解析_第4页
浙江省9+1高中联盟2024届高一上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省9+1高中联盟2024届高一上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知函数是幂函数,且在上是减函数,则实数m的值是()A或2 B.2C. D.12.若不计空气阻力,则竖直上抛的物体距离抛出点的高度h(单位:)与时间t(单位:)满足关系式(取,为上抛物体的初始速度).一同学在体育课上练习排球垫球,某次垫球,排球离开手臂竖直上抛的瞬时速度,则在不计空气阻力的情况下,排球在垫出点2m以上的位置大约停留()A.1 B.1.5C.1.8 D.2.23.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个4.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.5.已知幂函数的图象过点(2,),则的值为()A. B.C. D.6.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.17.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.8.函数的单调递减区间是()A.() B.()C.() D.()9.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.10.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.11.已知,且,则的最小值为()A.3 B.4C.6 D.912.若是圆的弦,的中点是(-1,2),则直线的方程是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.下列五个结论:集合2,3,4,5,,集合,若f:,则对应关系f是从集合A到集合B的映射;函数的定义域为,则函数的定义域也是;存在实数,使得成立;是函数的对称轴方程;曲线和直线的公共点个数为m,则m不可能为1;其中正确有______写出所有正确的序号14.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则15.已知直线平行,则实数的值为____________16.函数的值域是________三、解答题(本大题共6小题,共70分)17.求值:(1)(2)2log310+log30.8118.已知命题,且,命题,且,(1)若,求实数a的取值范围;(2)若p是q的充分条件,求实数a的取值范围19.已知,且,(1)求,的值;(2),求的值20.如图所示,某居民小区内建一块直角三角形草坪,直角边米,米,扇形花坛是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路和,考虑到小区整体规划,要求M、N在斜边上,O在弧上(点O异于D,E两点),,.(1)设,记,求的表达式,并求出此函数的定义域.(2)经核算,两条路每米铺设费用均为400元,如何设计的大小,使铺路的总费用最低?并求出最低总费用.21.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.22.某公司为了解宿州市用户对其产品的满意度,从宿州市,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图(如图)和地区的用户满意度评分的频数分布表(如表1)满意度评分频数2814106表1满意度评分低于70分满意度等级不满意满意非常满意表2(1)求图中的值,并分别求出,两地区样本用户满意度评分低于70分的频率(2)根据用户满意度评分,将用户的满意度分为三个等级(如表2),将频率看作概率,从,两地用户中各随机抽查1名用户进行调查,求至少有一名用户评分满意度等级为“满意”或“非常满意”的概率.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由函数是幂函数可得,解得或2,再讨论单调性即可得出.【详解】是幂函数,,解得或2,当时,在上是减函数,符合题意,当时,在上是增函数,不符合题意,.故选:C.2、D【解析】将,代入,得出时间t,再求间隔时间即可.【详解】解:将,代入,得,解得,所以排球在垫出点2m以上的位置大约停留.故选:D3、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A4、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C5、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题6、D【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D7、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A8、A【解析】根据余弦函数单调性,解得到答案.【详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.9、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A10、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.11、A【解析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.12、B【解析】由题意知,直线PQ过点A(-1,2),且和直线OA垂直,故其方程为:y﹣2=(x+1),整理得x-2y+5=0故答案为B二、填空题(本大题共4小题,共20分)13、【解析】由,,结合映射的定义可判断;由由,解不等式可判断;由辅助角公式和正弦函数的值域,可判断;由正弦函数的对称轴,可判断;由的图象可判断交点个数,可判断【详解】由于,,B中无元素对应,故错误;函数的定义域为,由,可得,则函数的定义域也是,故正确;由于的最大值为,,故不正确;由为最小值,是函数的对称轴方程,故正确;曲线和直线的公共点个数为m,如图所示,m可能为0,2,3,4,则m不可能为1,故正确,故答案为【点睛】本题主要考查函数的定义域、值域和对称性、图象交点个数,考查运算能力和推理能力,属于基础题14、③④【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.15、【解析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题16、##【解析】求出的范围,再根据对数函数的性质即可求该函数值域.【详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)4【解析】(1)利用分数指数幂的性质运算即可;(2)利用对数的运算性质计算可得结果.试题解析:(1),(2)2log310+log30.81=18、(1);(2).【解析】(1)由可得,解不等式求出a的取值范围即可;(2)把p是q的充分条件转化为集合A和集合B之间的关系,运用集合的知识列出不等式组求解a的范围即可.【详解】(1),,解之得:,故a的取值范围为;(2)或,p是q的充分条件,,或,解之得:或,故实数a的取值范围为.【点睛】本题考查元素与集合间的关系,考查充分条件的应用,考查逻辑思维能力和运算能力,属于常考题.19、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围20、(1),;(2),.【解析】(1)过作的垂线交与两点,求出,即可求出的表达式,并求出此函数的定义域.(2)利用辅助角公式化简,即可得出结果.【详解】(1)如图,过作的垂线交与两点,则,,,,,则,,所以,,(2),,当,即时,总费用最少为.21、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(t)递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)另解:令t=ex(t>1),则h(t)==1+,可令k=4t+7(k>11),可得h(t)=1+,由3k+在k>11递增,可得h(t)在k>11递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)【点睛】本题考查函数的奇偶性和单调性的判断和运用,考查函数方程的转化思想,以及构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.22、(1);地区样本用户满意度评分低于70分的频率为;地区样本用户满意度评分低于70分的频率为(2)【解析】(1)由频率和等于1计算可求得,进而计算低于70分的频率即可得出结果.(2)由(1)可知,记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论