版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江金华市浙师大附中2023-2024学年数学高一上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知函数,,则的值域为()A. B.C. D.2.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.3.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的,分别为()A., B.,C., D.,4.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角5.过点作圆的两条切线,切点分别为,,则所在直线的方程为()A. B.C. D.6.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.7.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.8.所有与角的终边相同的角可以表示为,其中角()A.一定是小于90°的角 B.一定是第一象限的角C.一定是正角 D.可以是任意角9.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则()A.k≥4 B.k>4C.k≥8 D.k>810.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.11.已知函数为偶函数,且在上单调递增,,则不等式的解集为()A. B.C. D.12.不等式的解集为,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知角的终边过点,则_______14.函数,则________15.已知,是方程的两根,则__________16.的值等于____________三、解答题(本大题共6小题,共70分)17.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.18.已知(1)作出函数的图象,并写出单调区间;(2)若函数有两个零点,求实数的取值范围19.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.20.如图,四棱锥的底面为矩形,,.(1)证明:平面平面.(2)若,,,求点到平面的距离.21.已知的三个顶点是,直线过点且与边所在直线平行.(1)求直线的方程;(2)求的面积.22.已知函数定义在上且满足下列两个条件:①对任意都有;②当时,有,(1)求,并证明函数在上是奇函数;(2)验证函数是否满足这些条件;(3)若,试求函数的零点.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据两角和的正弦公式、二倍角公式和辅助角公式化简可得,结合和正弦函数的单调性即可求出函数的最大值和最小值.【详解】由题意知,,由,得,又函数在上单调递增,在上单调递减,令,所以函数在上单调递增,在上单调递减,有,所以,故的值域为.故选:A2、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.3、C【解析】执行程序框图,;;;,结束循环,输出的分别为,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D5、B【解析】先由圆方程得到圆心和半径,求出的长,以及的中点坐标,得到以为直径的圆的方程,由两圆方程作差整理,即可得出所在直线方程.【详解】因为圆的圆心为,半径为,所以,的中点为,则以为直径的圆的方程为,所以为两圆的公共弦,因此两圆的方法作差得所在直线方程为,即.故选:B.【点睛】本题主要考查求两圆公共弦所在直线方法,属于常考题型.6、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C7、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题8、D【解析】由终边相同的角的表示的结论的适用范围可得正确选项.【详解】因为结论与角的终边相同的角可以表示为适用于任意角,所以D正确,故选:D.9、D【解析】首先确定集合A,由此得到log2k>3,即可求k的取值范围.【详解】∵集合A={x∈N|1<x<log2k},集合A中至少有2个元素,∴A={2,3},则log2k>3,可得k>8.故选:D.10、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B11、A【解析】由题可得函数在上单调递减,,且,再利用函数单调性即得.【详解】因为函数为偶函数且在上单调逆增,,所以函数在上单调递减,,且,所以,所以,解得或,即的取值范围是.故选:A.12、A【解析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A二、填空题(本大题共4小题,共20分)13、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.14、【解析】利用函数的解析式可计算得出的值.【详解】由已知条件可得.故答案为:.15、##【解析】将所求式利用两角和的正弦与两角差的余弦公式展开,然后根据商数关系弦化切,最后结合韦达定理即可求解.【详解】解:因为,是方程的两根,所以,所以,故答案为:.16、2【解析】利用诱导公式、降次公式进行化简求值.【详解】.故答案为:三、解答题(本大题共6小题,共70分)17、【解析】阅读程序框图可知,此程序表示的函数为,当时,得.当时,得.试题解析:此程序表示的函数为,当时,得.当时,得.故当输出的时,输入的,故答案为.18、(1)见解析;(2)【解析】(1)根据函数的表达式,作出函数的图象即可;(2)问题转化为求函数的交点问题,结合函数的图象,由数形结合得出即可【详解】解:(1)画出函数的图象,如图示:,由图象得:在,单调递增;(2)若函数有两个零点,则和有2个交点,结合图象得:【点睛】本题考查了指数函数、对数函数的图象及性质,考查函数的零点问题,是一道基础题19、(1);(2)分钟;(3)见详解.【解析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【点睛】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.20、(1)证明见解析;(2).【解析】(1)连接,交于点,连接,证明平面,即可证明出平面平面.(2)用等体积法,即,即可求出答案.【小问1详解】连接,交于点,连接,如图所示,底面为矩形,为,的中点,又,,,,又,平面,平面,平面平面【小问2详解】,,,,在中,,,在中,,在中,,,,,,设点到平面的距离为,由等体积法可知,又平面,为点到平面的距离,,,即点到平面的距离为21、(1)(2)【解析】(1)利用线线平行得到直线的斜率,由点斜式得直线方程;(2)利用点点距求得,利用点线距求得三角形的高,从而得到的面积.试题解析:(1)由题意可知:直线的斜率为:,∵,直线的斜率为-2,∴直线的方程为:,即.(2)∵,点到直线的距离等于点到直线的距离,∴,∴的面积.22、(1)见解析;(2)见解析;(3).【解析】令代入即可求得,令,则可得,即可证明结论根据函数的解析式求出定义域满足条件,再根据对数的运算性质,计算与并进行比较,根据对数函数的性质判断当时,的符号,即可得证用定义法先证明函数的单调性,然后转化函数的零点为,利用条件进行求解【详解】(1)对条件中的,令得.再令可得所以在(-1,1)是奇函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度远程英语教育兼职外教合同3篇
- 二零二五年酒店员工福利待遇转让合同示例3篇
- 二零二五版寄卖合同范本:农产品寄售协议书3篇
- 二零二五版植物营养肥料试验与研究服务合同3篇
- 二零二五年度酒类批发市场租赁销售合同2篇
- 二零二五年度耕地承包与农村土地承包权登记发证合同2篇
- 二零二五年度红色文化遗址保护与修复合同3篇
- 二零二五版趸购电合同:电力批发市场交易合同2篇
- 二零二五版高端社区地下车库经营权转让合同3篇
- 二零二五年度智能化办公大楼安全防范系统合同2篇
- 【传媒大学】2024年新营销
- 乳腺癌的综合治疗及进展
- 【大学课件】基于BGP协议的IP黑名单分发系统
- 2025届广东省佛山市高三上学期普通高中教学质量检测(一模)英语试卷(无答案)
- 自身免疫性脑炎课件
- 人力资源管理各岗位工作职责
- 信阳农林学院《新媒体传播学》2023-2024学年第一学期期末试卷
- 2024建筑公司年终工作总结(32篇)
- 信息安全意识培训课件
- 2024年项目投资计划书(三篇)
- 配电安规课件
评论
0/150
提交评论