




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省乐清市育英寄宿学校2023年数学九年级第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.从这九个自然数中任取一个,是的倍数的概率是().A. B. C. D.2.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:13.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个的2倍,则A,B两个样本的方差关系是()A.B是A的倍 B.B是A的2倍 C.B是A的4倍 D.一样大4.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.5.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是(
)A.2 B.4 C.6 D.86.如图,已知与位似,位似中心为点且的面积与面积之比为,则的值为()A. B.C. D.7.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A. B. C. D.8.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生9.由3x=2y(x≠0),可得比例式为()A. B. C. D.10.将抛物线向上平移个单位长度,再向右平移个单位长度,所得到的抛物线为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,半圆的半径为4,初始状态下其直径平行于直线.现让半圆沿直线进行无滑动滚动,直到半圆的直径与直线重合为止.在这个滚动过程中,圆心运动路径的长度等于_________.12.如图,矩形中,,连接,将线段分别绕点顺时针旋转90°至,线段与弧交于点,连接,则图中阴影部分面积为____.13.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是______.14.已知反比例函数y=的图象在第一、三象限内,则k的值可以是__.(写出满足条件的一个k的值即可)15.正五边形的每个内角为______度.16.m、n分别为的一元二次方程的两个不同实数根,则代数式的值为________17.已知关于x的方程x2+3x+m=0有一个根为﹣2,则m=_____,另一个根为_____.18.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为_________.三、解答题(共66分)19.(10分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.20.(6分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.21.(6分)已知:如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式;(2)如图,点是线段上方抛物线上的一个动点,连结、.设的面积为.点的横坐标为.①试求关于的函数关系式;②请说明当点运动到什么位置时,的面积有最大值?③过点作轴的垂线,交线段于点,再过点做轴交抛物线于点,连结,请问是否存在点使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(8分)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.23.(8分)如图,在正方形中,点在边上,过点作于,且.(1)若,求正方形的周长;(2)若,求正方形的面积.24.(8分)如图,在平面直角坐标系中,抛物线y=﹣x1+1x+a交x轴于点A,B,交y轴于点C,点A的横坐标为﹣1.(1)求抛物线的对称轴和函数表达式.(1)连结BC线段,BC上有一点D,过点D作x轴的平行线交抛物线于点E,F,若EF=6,求点D的坐标.25.(10分)如图是由相同的5个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为a,试求出该几何体的表面积.26.(10分)在的方格纸中,的三个顶点都在格点上.在图1中画出线段BD,使,其中D是格点;在图2中画出线段BE,使,其中E是格点.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是偶数的概率是:.故选B.2、C【分析】菱形的性质;含30度角的直角三角形的性质.【详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.3、C【解析】试题分析:∵B样本的数据恰好是A样本数据每个的2倍,∴A,B两个样本的方差关系是B是A的4倍故选C考点:方差4、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.5、D【解析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到△DEF∽△ABC,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面积=2×4=8故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6、A【分析】根据位似图形的性质得到AC:DF=3:1,AC∥DF,再证明∽,根据相似的性质进而得出答案.【详解】∵与位似,且的面积与面积之比为9:4,∴AC:DF=3:1,AC∥DF,∴∠ACO=∠DFO,∠CAO=∠FDO,∴∽,∴AO:OD=AC:DF=3:1.故选:A.【点睛】本题考查位似图形的性质,及相似三角形的判定与性质,注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.7、D【分析】先根据一次函数的图象判断a、c的符号,再判断二次函数图象与实际是否相符,判断正误.【详解】解:A、由一次函数y=ax+c的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;
B、由一次函数y=ax+c的图象可得:a>0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向上,交于y轴的正半轴,错误;
C、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.
D、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,与一次函数的图象交于同一点,正确;
故选:D.【点睛】本题考查二次函数的图象,一次函数的图象,解题的关键是熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8、D【分析】利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;
B、不可能发生的事件发生的概率为0,正确;
C、随机事件发生的概率大于0且小于1,正确;
D、概率很小的事件也有可能发生,故错误,
故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.9、C【分析】由3x=2y(x≠0),根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:A、由得,2x=3y,故本选项不符合题意;B、由得,2x=3y,故本选项不符合题意;C、由得,3x=2y,故本选项符合题意;D、由得,xy=6,故本选项不符合题意.故选:C.【点睛】本题考查比例的性质相关,主要利用了两内项之积等于两外项之积,熟练掌握其性质是解题的关键.10、B【分析】根据“左加右减”,“上加下减”的平移规律即可得出答案.【详解】将抛物线向上平移个单位长度,再向右平移个单位长度,所得到的抛物线为故选:B.【点睛】本题考查二次函数图象的平移,熟练掌握平移规律是解题的关键.二、填空题(每小题3分,共24分)11、【分析】由图可知,圆心运动路径的长度主要分两部分求解,从初始状态到垂直状态,圆心一直在一条直线上;从垂直状态到重合状态,圆心运动轨迹是圆周,计算两部分结果,相加即可.【详解】由题意知:半圆的半径为4,∴从初始状态到垂直状态,圆心运动路径的长度=.∴从垂直状态到重合状态,圆心运动路径的长度=.即圆心运动路径的总长度=.故答案为.【点睛】本题主要考查了弧长公式和圆周公式,正确掌握弧长公式和圆周公式是解题的关键.12、【分析】根据勾股定理得到、由三角函数的定义得到、根据旋转的性质得到、求得,然后根据图形的面积公式即可得到结论.【详解】解:∵四边形是矩形∴∵,∴,∴∵线段分别绕点顺时针旋转至∴∴∴.故答案是:【点睛】本题考查了矩形的性质、勾股定理、锐角三角函数、直角三角形的面积、扇形的面积、将求不规则图形面积问题转化为求规则图形面积相加减问题,解题的关键在于面积问题的转化.13、【解析】画树状图得:∵共有6种等可能的结果,转盘所转到的两个数字之积为奇数的有2种情况,
∴转盘所转到的两个数字之积为奇数的概率是:.故答案是:.【点睛】此题考查了列表法或树状图法求概率.注意此题属于放回实验,用到的知识点为:概率=所求情况数与总情况数之比.14、1【解析】在本题中已知“反比例函数的图像在第一、三象限内,”从而得到2-k>0,顺利求解k的值.【详解】反比例函数的图像在第一、三象限内可得,2-k>0解得:k<2不妨取k=1,可得已知反比例函数,即可满足的图像在第一、三象限内.【点睛】熟练掌握反比例函数的性质是本题的解题关键.15、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.【点睛】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.16、1【分析】由一元二次方程的解的定义可得m2-4m-1=1,则m2-4m=1,再由根于系数的关系可得mn=-1,最后整体代入即可解答.【详解】解:∵m、n分别为的一元二次方程∴m+n=4,mn=-1,m2-4m-1=1,∴m2-4m=1∴=1-1=1故答案为1.【点睛】本题考查了一元二次方程的解和根与系数的关系,其中正确运用根与系数的关系是解答本题的关键.17、2x=﹣1【分析】将x=﹣2代入方程即可求出m的值,然后根据根与系数的关系即可取出另外一个根.【详解】解:将x=﹣2代入x2+3x+m=0,∴4﹣6+m=0,∴m=2,设另外一个根为x,∴﹣2+x=﹣3,∴x=﹣1,故答案为:2,x=﹣1【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.18、【解析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】解:当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=-x=2时,x=-2,
∴点A2的坐标为(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).
故答案为(-21009,-21010).【点睛】本题考查一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.三、解答题(共66分)19、【分析】根据平行证出△CDK∽△DAH,利用相似比即可得出答案.【详解】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴,即,∴CK=答:KC的长为步.【点睛】本题主要考查的是相似三角形的应用,难度适中,解题关键是找出相似三角形.20、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;
(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【详解】解:(1)根据“同弧所对的圆周角相等”,
得∠A=∠D,∠C=∠ABD,
∴△AEC∽△DEB
(2)∵CD⊥AB,O为圆心,
∴BE=AB=3,
设⊙O的半径为r,
∵DE=1,则OE=r−1,
在Rt△OEB中,
由勾股定理得:OE2+EB2=OB2,
即:(r−1)2+32=r2,
解得r=1,即⊙O的半径为1.【点睛】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.21、(1);(2)①,②当m=3时,S有最大值,③点P的坐标为(4,6)或(,).【分析】(1)由,则-12a=6,求得a即可;(2)①过点P作x轴的垂线交AB于点D,先求出AB的表达式y=-x+6,设点,则点D(m,-m+6),然后再表示即可;②由在中,<0,故S有最大值;③△PDE为等腰直角三角形,则PE=PD,然后再确定函数的对称轴、E点的横坐标,进一步可得|PE|=2m-4,即求得m即可确定P的坐标.【详解】解:(1)由抛物线的表达式可化为,则-12a=6,解得:a=,故抛物线的表达式为:;(2)①过点P作x轴的垂线交AB于点D,由点A(0,6)、B的坐标可得直线AB的表达式为:y=-x+6,设点,则点D(m,-m+6),∴;②∵,<0∴当m=3时,S有最大值;③∵△PDE为等腰直角三角形,∴PE=PD,∵点,函数的对称轴为:x=2,则点E的横坐标为:4-m,则|PE|=2m-4,即,解得:m=4或-2或或(舍去-2和)当m=4时,=6;当m=时,=.故点P的坐标为(4,6)或(,).【点睛】本题属于二次函数综合应用题,主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点,掌握并灵活应用所学知识是解答本题的关键.22、(1)y=x-1;(2)当y1>y2时,x<0和x>1.【分析】(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.【详解】解:(1)抛物线y1=x2-2x-1,当x=0时,y=-1,当y=0时,x=1或-1,即A的坐标为(-1,0),B的坐标为(1,0),C的坐标为(0,-1),把B、C的坐标代入直线y2=kx+b得:,解得:k=1,b=-1,即直线BC的函数关系式是y=x-1;(2)∵B的坐标为(1,0),C的坐标为(0,-1),如图,∴当y1>y2时,x的取值范围是x<0或x>1.【点睛】本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.23、(1);(2).【分析】(1)利用AA定理证明,从而得到,设,分别用含x的式子表示出AB,BE,ED,代入比例式,求出x的值,从而求正方形周长;(2)在上取一点,使,连接,利用等腰直角三角形的性质求得,,,然后利用勾股定理求得,从而求解正方形面积.【详解】解:(1)∵四边形是正方形,∴.∵,∴.∴.∵,∴.∴.设.∵,∴.∴.∴,∴,即.∴正方形的周长为.(2)如图,在上取一点,使,连接.∵,,∴.又因为∠ABD=∠ADB=45°∴.∴.在中,,∴.∴.在中,.∴正方形的面积.【点睛】本题考查相似三角形的判定和性质,正方形的性质,等腰直角三角形的判定和性质以及勾股定理的应用,添加辅助线构造等腰直角三角形是本题的解题关键.24、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全指南试题及答案
- 共享出行平台信用体系构建与信用评级机制研究报告
- 农产品溯源2025年智慧农业与食品安全监管融合报告
- 安全实务试题及答案
- 金融衍生品市场2025年创新产品开发与风险管理体系研究报告
- 直播平台内容监管与自律发展对直播行业监管的创新报告
- 绿色建筑认证体系在绿色生态园区建设的应用与发展策略报告
- 月子中心医护培训课件
- 中国医药电子课件
- 消毒供应中心管理规范
- 工程认证背景下软件工程专业实践课程平台研究与建设
- 2025年AI Agent+医疗行业研究报告
- T/CAPA 008-2022红光类美容仪器在皮肤健康管理中的应用规范
- 《危险化学品企业动火作业安全管理规定》知识培训
- 江苏省宿迁市名校2025年七下数学期末检测试题含解析
- 山东省滨州市名校2025届物理八下期末综合测试模拟试题含解析
- 医疗领域AI人才薪酬市场现状及趋势
- 中国工商银行校园招聘笔试EPI数字推理真题汇编理科
- 晚宴合同协议书
- 医疗废物管理
- 山东咏坤新材料科技有限公司年产4000吨锂钠电池负极材料生产项目报告书
评论
0/150
提交评论