云南省曲靖市麒麟区三中2023年数学高一上期末经典模拟试题含解析_第1页
云南省曲靖市麒麟区三中2023年数学高一上期末经典模拟试题含解析_第2页
云南省曲靖市麒麟区三中2023年数学高一上期末经典模拟试题含解析_第3页
云南省曲靖市麒麟区三中2023年数学高一上期末经典模拟试题含解析_第4页
云南省曲靖市麒麟区三中2023年数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市麒麟区三中2023年数学高一上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数=的图象恒过定点,则点的坐标是A.(1,5) B.(1,4)C.(0,4) D.(4,0)2.已知A(-4,2,3)关于xOz平面的对称点为,关于z轴的对称点为,则等于()A.8 B.12C.16 D.193.若直线的倾斜角为,且经过点,则直线的方程是A. B.C. D.4.已知两点,点在直线上,则的最小值为()A. B.9C. D.105.下列命题中正确的是()A. B.C. D.6.命题“,”的否定为A., B.,C., D.,7.已知集合,集合,则()A. B.C. D.8.设全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,69.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为()A. B.C. D.10.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值是________.12.已知扇形的弧长为,且半径为,则扇形的面积是__________.13.已知函数满足,当时,,若不等式的解集是集合的子集,则a的取值范围是______14.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.15.已知函数,关于方程有四个不同的实数解,则的取值范围为__________16.已知向量不共线,,若,则___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x与利润y(单位:万元)分别满足函数关系与(1)求,与,的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值18.已知函数,且点在函数图象上.(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;(2)若方程有两个不相等的实数根,求实数的取值范围.19.已知函数且.(1)若函数的图象过点,求的值;(2)当时,若不等式对任意恒成立,求实数的取值范围20.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.21.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令=,得x=1,此时y=5所以函数=的图象恒过定点(1,5).选A点睛:(1)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为(2)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为2、A【解析】由题可知∴故选A3、B【解析】直线l的斜率等于tan45°=1,由点斜式求得直线l的方程为y-0=,即故选:B4、C【解析】根据给定条件求出B关于直线的对称点坐标,再利用两点间距离公式计算作答.【详解】依题意,若关于直线的对称点,∴,解得,∴,连接交直线于点,连接,如图,在直线上任取点C,连接,显然,直线垂直平分线段,则有,当且仅当点与重合时取等号,∴,故的最小值为.故选:C5、A【解析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.6、A【解析】特称命题的否定是全称命题,并将结论否定,即可得答案.【详解】命题“,”的否定为“,”.故选:A.【点睛】本题考查特称命题的否定的书写,是基础题.7、C【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可.【详解】集合,则集合,,故选:C.【点睛】本题考查了集合的基本运算,属于基础题.8、B【解析】由补集的定义分析可得∁U【详解】根据题意,全集U=1,2,3,4,5,6,7,8,9,而A=则∁U故选:B9、C【解析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和10、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】直接利用基本不等式即可得出答案.【详解】解:因为,所以,当且仅当,即时,取等号,所以函数的最小值为2.故答案为:2.12、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.13、【解析】先由已知条件判断出函数的单调性,再把不等式转化为整式不等式,再利用子集的要求即可求得a的取值范围.【详解】由可知,关于对称,又,当时,单调递减,故不等式等价于,即,因为不等式解集是集合的子集,所以,解得故答案为:14、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.15、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.16、【解析】由,将表示为的数乘,求出参数【详解】因为向量不共线,,且,所以,即,解得【点睛】向量与共线,当且仅当有唯一一个实数,使得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,,(2)分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.【解析】(1)代入点的坐标,求出,与,的值;(2)在第一问的基础上,表达出总利润的关系式,利用配方求出最大值.【小问1详解】将代入中,,解得:,将代入中,,解得:,所以,,,.【小问2详解】设分配生产乙商品的投资为m(0≤m≤20)万元、甲商品的投资为万元,此时的总利润为w,则,因为0≤m≤20,所以当,即时,w取得最大值,即分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.18、(1),图象见解析(2)【解析】(1)先根据点在函数的图象上求出,再分段画出函数的图象;(2)将问题转化为直线与函数的图象有两个公共点,在同一坐标系中作出图象,利用图象进行求解.【小问1详解】解:因为点在函数的图象上,所以,解得,即,其图象如图所示:【小问2详解】解:将化为,因为方程有两个不相等的实数根,所以直线与函数的图象有两个公共点,在同一坐标系中作出直线与函数的图象(如图所示),由图象,得,即,即的取值范围是.19、(1);(2)﹒【解析】(1)将点代入解析式,即可求出的值;(2)换元法,令,然后利用函数思想求出新函数的最小值即可【小问1详解】由已知得,∴,解得,结合,且,∴;【小问2详解】由已知得,当,时恒成立,令,,且,,,∵在,上单调递增,故,∵是单调递增函数,故,故即为所求,即的范围为20、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.21、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论