云南省石屏县一中2023年高一数学第一学期期末教学质量检测试题含解析_第1页
云南省石屏县一中2023年高一数学第一学期期末教学质量检测试题含解析_第2页
云南省石屏县一中2023年高一数学第一学期期末教学质量检测试题含解析_第3页
云南省石屏县一中2023年高一数学第一学期期末教学质量检测试题含解析_第4页
云南省石屏县一中2023年高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省石屏县一中2023年高一数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若函数在区间上单调递增,则实数的取值范围为()A B.C. D.2.已知函数且,则实数的范围()A. B.C. D.3.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 84.已知向量,且,则A. B.C. D.5.已知函数,则满足的x的取值范围是()A. B.C. D.6.“”是“”的条件A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件7.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则8.函数,若恰有3个零点,则a的取值范围是()A. B.C. D.9.cos600°值等于A. B.C. D.10.过点且与直线平行的直线方程是()A. B.C. D.11.某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为A., B.,C, D.,12.一条侧棱垂直于底面的三棱锥P﹣ABC的三视图不可能是()A.直角三角形B.等边三角形C.菱形D.顶角是90°的等腰三角形二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数定义域为______.14.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________15.已知函数,则______16.已知函数,那么_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,E为AD的中点,过A,D,N的平面交PC于点M.求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.18.已知,,求下列各式的值:(1)(2)19.已知集合,,.若,求实数a的取值范围.20.观察以下等式:①②③④⑤(1)对①②③进行化简求值,并猜想出④⑤式子的值;(2)根据上述各式的共同特点,写出一条能反映一般规律的等式,并对等式的正确性作出证明21.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值22.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】函数为复合函数,先求出函数的定义域为,因为外层函数为减函数,则求内层函数的减区间为,由题意知函数在区间上单调递增,则是的子集,列出关于的不等式组,即可得到答案.【详解】的定义域为,令,则函数为,外层函数单调递减,由复合函数的单调性为同增异减,要求函数的增区间,即求的减区间,当,单调递减,则在上单调递增,即是的子集,则.故选:C.2、B【解析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.3、D【解析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.4、B【解析】由已知得,因为,所以,即,解得.选B5、D【解析】通过解不等式来求得的取值范围.【详解】依题意,即:或,即:或,解得或.所以的取值范围是.故选:D6、A【解析】若,则;若,则,推不出.所以“”是“”成立的充分不必要条件.故选A考点:充分必要条件7、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.8、B【解析】画出的图像后,数形结合解决函数零点个数问题.【详解】做出函数图像如下由得,由得故函数有3个零点若恰有3个零点,即函数与直线有三个交点,则a的取值范围,故选:B9、B【解析】利用诱导公式化简即可得到结果.【详解】cos600°故选B【点睛】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.10、D【解析】先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.11、D【解析】均值为;方差为,故选D.考点:数据样本的均值与方差.12、C【解析】直接利用空间图形和三视图之间的转换的应用求出结果【详解】由于三棱锥P﹣ABC的一条侧棱垂直于底面,所以无论怎样摆放,该三视图都为三角形,不可能为菱形故选:C【点睛】本题考查三视图和几何体之间的转换,主要考查学生的空间想象能力,属于基础题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】解余弦不等式,即可得出其定义域.【详解】由对数函数的定义知即,∴,∴函数的定义域为。故答案为:14、【解析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【点睛】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.15、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.16、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:3三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见证明(2)见证明(3)见证明【解析】(1)先证明四边形DENM为平行四边形,利用线面平行的判定定理即可得到证明;(2)先证明AD⊥平面PEB,由AD∥BC可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB可得PB⊥MN,由已知得PB⊥AN,即可证得PB⊥平面ADMN,利用面面垂直的判定定理即可得到证明.【详解】(1)∵AD∥BC,BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC.又平面ADMN∩平面PBC=MN,∴AD∥MN.又∵AD∥BC,∴MN∥BC又∵N为PB的中点,∴M为PC的中点,∴MN=BC∵E为AD中点,DE=AD=BC=MN,∴DEMN,∴四边形DENM为平行四边形,∴EN∥DM.又∵EN⊄平面PDC,DM⊂平面PDC,∴EN∥平面PDC(2)∵四边形ABCD是边长为2的菱形,且∠BAD=60°,E为AD中点,∴BE⊥AD.又∵PE⊥AD,PE∩BE=E,∴AD⊥平面PEB.∵AD∥BC,∴BC⊥平面PEB(3)由(2)知AD⊥PB又∵PA=AB,且N为PB的中点,∴AN⊥PB∵AD∩AN=A,∴PB⊥平面ADMN.又∵PB⊂平面PBC,∴平面PBC⊥平面ADMN.【点睛】本题考查线面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,属于基本知识的考查18、(1).(2)【解析】(1)利用二倍角公式和诱导公式直接求解;(2)判断出,根据,求出的值.【小问1详解】因为,所以.【小问2详解】.因为,所以,所以,所以,所以,所以19、【解析】求函数定义域得,解不等式得,进而得,再结合题意,分和两种情况求解即可.【详解】解:由,解得,所以,因为,解得,所以所以因为,所以,当时,,解得时,可得,解得:综上可得:实数a的取值范围是20、(1)答案见解析;(2);证明见解析.【解析】(1)利用特殊角的三角函数值计算即得;(2)根据式子的特点可得等式,然后利用和差角公式及同角关系式化简运算即得,【小问1详解】猜想:【小问2详解】三角恒等式为证明:=21、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.22、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论