版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市富阳区2023年八年级数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.102.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是()A.24° B.30° C.32° D.36°3.下列运算中正确的是()A.x2÷x8=x﹣4 B.a•a2=a2 C.(a3)2=a6 D.(3a)3=9a34.如图,直线,点、在上,点在上,若、,则的大小为()A. B. C. D.5.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤06.等腰三角形的两边分别等于5、12,则它的周长为()A.29 B.22 C.22或29 D.177.4的算术平方根是()A.±4 B.4 C.±2 D.28.已知是方程的解,则的值是()A. B. C. D.9.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或1010.直线上有三个点,,,则,,的大小关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.分解因式:2x3﹣6x2+4x=__________.12.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC=________.13.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.14.我们知道多项式的乘法可以利用图形的面积进行解释,如就可以用图(1)的面积表示,请你仿照图(1)写出图(2)表示的一个等式______.15.如图,等边的边长为,则点的坐标为__________.16.已知am=3,an=2,则a2m-3n=___________17.计算:-4(a2b-1)2÷8ab2=_____.18.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是______________.三、解答题(共66分)19.(10分)请在下列横线上注明理由.如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.证明:∵(已知),∴(______),∴(______),∵(已知),∴(______),∵点到和的距离相等(已知),∴是的角平分线(______),∴(角平分线的定义),∴(______),即平分(角平分线的定义),∴点到和的距离相等(______).20.(6分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF,求证:CE=DF.21.(6分)如图,已知与互为补角,且,(1)求证:;(2)若,平分,求证:.22.(8分)如图,在中,对角线,交于点,是上任意一点,连接并延长,交于点,连接,.(1)求证:四边形是平行四边形;(2)若,,.求出的边上的高的值.23.(8分)端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家千米的景区游玩,甲先以每小时千米的速度匀速行驶小时,再以每小时千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程、与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:(1)乙的速度为:_______;(2)图中点的坐标是________;(3)图中点的坐标是________;(4)题中_________;(5)甲在途中休息____________.24.(8分)小李在某商场购买两种商品若干次(每次商品都买),其中前两次均按标价购买,第三次购买时,商品同时打折.三次购买商品的数量和费用如下表所示:购买A商品的数量/个购买B商品的数量/个购买总费用/元第一次第二次第三次(1)求商品的标价各是多少元?(2)若小李第三次购买时商品的折扣相同,则商场是打几折出售这两种商品的?(3)在(2)的条件下,若小李第四次购买商品共花去了元,则小李的购买方案可能有哪几种?25.(10分)如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?26.(10分)先化简分式,然后从中选取一个你认为合适的整数代入求值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.2、C【分析】连接PA,根据线段垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义得到∠PBC=∠ABP,根据三角形内角和定理列式计算即可.【详解】连接PA,如图所示:
∵直线L为BC的垂直平分线,
∴PB=PC,
∴∠PBC=∠PCB,
∵直线M为∠ABC的角平分线,
∴∠PBC=∠ABP,
设∠PBC=x,则∠PCB=∠ABP=x,
∴x+x+x+60°+24°=180°,
解得,x=32°,
故选C.【点睛】考查的是线段垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【详解】A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选C.【点睛】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4、B【分析】根据等边对等角的性质,可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,同旁内角互补即可求得∠1的度数.【详解】解:∵AB=AC,
∴∠ACB=∠ABC=70°,
∵直线l1∥l2,
∴∠1+∠ACB+∠ABC=180°,
∴∠1=180°-∠ABC-∠ACB=180°-70°-70°=40°.
故选:B.【点睛】此题考查了平行线的性质,等腰三角形的性质.解题的关键是注意掌握两直线平行,同旁内角互补与等边对等角定理的应用.5、D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.6、A【解析】试题解析:有两种情况:①当腰是12时,三边是12,12,5,它的周长是12+12+5=29;②当腰是5时,三边是12,5,5,∵5+5<12,∴此时不能组成三角形.故选A.考点:1.等腰三角形的性质;2.三角形三边关系.7、D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x叫做a的算术平方根.【详解】解:4的算术平方根是2.故选D.【点睛】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.8、D【分析】把代入原方程即可求出m.【详解】把代入得-2m+5-1=0,解得m=2故选D.【点睛】此题主要考查二元一次方程的解,解题的关键是直接代入原方程.9、C【详解】分两种情况:在图①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故选C.10、A【分析】先根据函数解析式判断出一次函数的增减性,再根据各点横坐标的特点即可得出结论.【详解】∵直线y=kx+b中k<0,∴y随x的增大而减小,∵1.3>-1.5>−2.4,∴.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.二、填空题(每小题3分,共24分)11、2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.12、9【分析】根据勾股定理求出AB,再利用相似即可求解.【详解】∵AB=AC,∠BAC=120°∴∠C=30°,又∵AD⊥AC,AD=3∴∠DAC=90°,CD=6勾股定理得AC=AB=3,由图可知△ABD∽△BCA,∴BC=9【点睛】本题考查了勾股定理和相似三角形,属于简单题.证明相似是解题关键.13、1【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【详解】解:∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点睛】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.14、【分析】分别用长方形的面积公式和六个小长方形的面积之和表示图(2)的面积,从而建立等式即可.【详解】图(2)的面积可以表示为:图(2)的面积也可以表示为:所以有故答案为:.【点睛】本题主要考查多项式乘法,能够用两种方式表示出图中的面积是解题的关键.15、【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,∴OD=AD=OA=×2=,在Rt△BDO中,由勾股定理得:BD=,∴点B的坐标为(,3),故答案为:(,3).【点睛】本题考查了等边三角形的性质,坐标与图形性质和勾股定理等知识点,能正确作出辅助线是解此题的关键.16、【解析】a2m﹣3n=(a2m)÷(a3n)=(am)2÷(an)3=9÷8=,故答案为.17、【分析】利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.【详解】解:原式=-4a4b-2÷8ab2=-a3b-4=-,故答案为:-【点睛】本题考查了积的乘方、幂的乘方、以及单项式除以单项式,熟练掌握运算法则是解答本题的关键.18、三角形的稳定性【分析】用一根木条斜着钉好之后就会出现一个三角形,根据三角形的稳定性即可得到答案.【详解】用一根木条斜着钉好之后就会出现一个三角形,因为三角形具有稳定性,所以门框就会固定了.故答案为:三角形的稳定性.【点睛】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.三、解答题(共66分)19、同位角相等,两直线平行;两直线平行,同位角相等;两直线平行,同位角相等;角的内部到角的两边距离相等的点在角的平分线上;等量代换;角平分线上的点到角的两边的距离相等.【分析】根据角平分线的性质及平行线的性质与判定即可解答.【详解】证明:∵∠PFD=∠C(已知),∴PF∥AC(同位角相等,两直线平行),∴∠DPF=∠DAC(两直线平行,同位角相等).∵PE∥AB(已知),∴∠EPD=∠BAD(两直线平行,同位角相等).∵点D到PE和PF的距离相等(已知),∴PD是∠EPF的角平分线(角的内部到角的两边距离相等的点在角的平分线上),∴∠EPD=∠FPD(角平分线的定义),∴∠BAD=∠DAC(等量代换),即AD平分∠BAC(角平分线的定义),∴点D到AB和AC的距离相等(角平分线上的点到角的两边的距离相等)【点睛】本题考查了平行线的性质与判定、角平分线性质,此题难度不大,解题的关键是熟记角平分线的性质,注意数形结合思想的应用.20、见解析【分析】先根据AAS证明△AOC≌△BOD,得到AC=BD,再根据SAS证明△AEC≌△BFD,可证明CE=DF.【详解】证明:∵AC∥DB∴∠A=∠B在△AOC和△BOD中∵∴△AOC≌△BOD(AAS)∴AC=BD在△AEC和△BFD中∵∴△AEC≌△BFD(SAS)∴CE=DF【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.21、(1)详见解析;(2)详见解析.【分析】(1)由与互为补角,则,然后得到,即可得到结论成立;(2)由平行线的性质和角平分线的性质,得到,则,然后得到,即可得到结论成立.【详解】(1)证明:∵,,互为补角,∴,∴,∴,∵,∴,∴.(2)解:∵,∴,∵平分,∴,∴.∴,∵,∴,又∴,∴,∴,∴,【点睛】本题考查了平行线的判定和性质,角平分线的性质,等边对等角,三角形内角和定理,解题的关键是熟练掌握平行线的判定和性质,熟练运用所学知识进行解题.22、(1)详见解析;(2)【分析】(1)根据平行四边形性质得BO=DO,AO=CO,AD∥BC,构造条件证△AOE≌△COF(ASA),证CF=AE,CF∥AE,即可;(2)作AH⊥BC,根据直角三角形性质得CH=,再运用勾股定理可得.【详解】证明:(1)∵在▱ABCD中,AC,BD交于点O,
∴BO=DO,AO=CO,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中
,
∴△AOE≌△COF(ASA),
∴CF=AE,
∵CF∥AE,∴四边形AFCE是平行四边形.(2)作AH⊥BC,因为四边形是平行四边形,所以AD∥BC,所以∠DAH=∠AHC=90°,因为,所以∠CAH=30°,所以CH=所以AH=所以的边上的高的值是.【点睛】考核知识点:勾股定理,平行四边形性质和判定.熟练运用平行四边形性质和勾股定理是关键.23、(1)80千米/小时;(2)(1,60);(3)(2,160);(4);(5)1.【分析】(1)根据速度=路程时间即可得出乙的速度;(2)根据路程=速度时间,可得甲1小时所行驶的路程,即可得出A点坐标;(3)根据D的坐标可计算直线OD的解析式,从图中知E的横坐标为2,可得E的坐标;(4)根据2小时时甲追上乙,可知两人路程相等,列出方程,解方程即可;(5)根据点E到D的时间差及速度可得休息的时间.【详解】(1)乙的速度为:(千米/小时);故答案为:80千米/小时(2)∵甲先以每小时千米的速度匀速行驶小时到达A∴此时,甲走过的路程为60千米∴图中点的坐标是(1,60);故答案为:(1,60)(3)设直线OD的解析式为:,把代入得:,,∴直线OD的解析式为:,当时,,,故答案为:(4)由图像可知,两小时时,甲追上乙,由题意得:,∴,故答案为:1(5)∵,∴甲在途中休息1.故答案为:1【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.24、(1)商品标价为80元,商品标价为100元.(2)商场打六折出售这两种商品.(3)有3种购买方案,分别是A商品5个,B商品12个;A商品10个,B商品8个;A商品15个,B商品4个.【分析】(1)可设商品标价为元,商品标价为元,根据图表给的数量关系列出二元一次方程组解答即可.(2)求出第三次商品如果按原价买的价钱,再用实际购买费用相比即可.(3)求出两种商品折扣价之后,根据表中数量关系列出二元一次方程,化简后讨论各种可能性即可.【详解】解:(1)设商品标价为元,商品标价为元,由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 总工会工作总结和2024年工作计划
- 药材公司工作计划
- 大学生新学期开学学习计划
- 2024年度医院工作计划行政工作计划
- 疫情过后中班教学计划
- 各年龄段德育教育工作计划文档
- 2024年一年级班班级工作计划范文
- 2024年高三寒假假期计划高三寒假计划安排
- 企业前台工作计划范文
- 关于幼儿教师学期工作计划
- 人工智能及其应用5课件
- SHL领导力测评题库
- 电动汽车充电站员工入职培训
- 海南省2022-2023学年高一上学期期末学业水平诊断(一)数学试题
- 新媒体运营推广策划方案
- 双T板吊装施工专项方案
- 自媒体运营职业生涯规划书
- 临床护理科研存在的问题与对策
- 40道性格测试题及答案
- 2024届高考语文二轮专题复习与测试第二部分专题四文言文阅读精准突破五主观问答题课件
- 中石油昆仑好客加油站便利店基础知识
评论
0/150
提交评论