版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市宁波十校2023年数学高一上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知幂函数在上单调递减,设,,,则()A. B.C. D.2.函数(,且)的图象恒过定点,且点在角的终边上,则()A. B.C. D.3.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.04.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减5.若,则为()A. B.C. D.6.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.7.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个8.设全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},则A∩(∁UB)=()A. B.C. D.9.过点且与原点距离最大的直线方程是()A. B.C. D.10.设集合,则=A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知点在直线上,则的最小值为______12.已知函数是定义在上的偶函数,且在区间上单调递减,若实数满足,则的取值范围是______13.设为向量的夹角,且,,则的取值范围是_____.14.命题“,”的否定形式为__________________________.15.如果直线与直线互相垂直,则实数__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.17.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间18.某兴趣小组要测量钟楼的高度(单位:).如示意图,垂直放置的标杆的高度为,仰角.(1)该小组已测得一组的值,算出了,请据此算出的值(精确到);(2)该小组分析测得的数据后,认为适当调整标杆到钟楼的距离(单位:),使与之差较大,可以提高测量精度.若钟楼的实际高度为,试问为多少时,最大?19.设为实数,函数(1)当时,求在区间上的最大值;(2)设函数为在区间上的最大值,求的解析式;(3)求的最小值.20.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)用括号中的正确条件填空.函数的图象可以用下面的方法得到:先将正弦曲线,向___________(左,右)平移___________(,)个单位长度;在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的___________(,2)倍,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的___________(,2)倍,最后再把所得曲线向___________(上,下)平移___________(1,2)个单位长度.21.如图,欲在山林一侧建矩形苗圃,苗圃左侧为林地,三面通道各宽,苗圃与通道之间由栅栏隔开(1)若苗圃面积,求栅栏总长的最小值;(2)若苗圃带通道占地总面积为,求苗圃面积的最大值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,不合题意,当时,,此时在上单调递减,所以.因为,又,所以,因为在上单调递减,所以,又因为为偶函数,所以,所以.故选:C2、D【解析】根据对数型函数恒过定点得到定点,再根据点在角的终边上,由三角函数的定义得,即可得到答案.【详解】由于函数(,且)的图象恒过定点,则,点,点在角的终边上,.故选:D.3、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A4、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.5、A【解析】根据对数换底公式,结合指数函数与对数函数的单调性直接判断.【详解】由对数函数的单调性可知,即,且,,且,又,即,所以,又根据指数函数的单调性可得,所以,故选:A.6、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小7、A【解析】,所以集合A的真子集的个数为个,故选A.考点:子集8、D【解析】先求∁UB,然后求A∩(∁UB)【详解】∵(∁UB)={x|x<3或x≥5},∴A∩(∁UB)={x|0<x<3}故选D【点睛】本题主要考查集合的基本运算,比较基础9、A【解析】首先根据题意得到过点且与垂直的直线为所求直线,再求直线方程即可.【详解】由题知:过点且与原点距离最大的直线为过点且与垂直的直线.因为,故所求直线为,即.故选:A【点睛】本题主要考查直线方程的求解,数形结合为解题的关键,属于简单题.10、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.12、【解析】由函数的奇偶性与单调性分析可得,结合对数的运算性质变形可得,从而可得结果【详解】因为函数是定义在上的偶函数,且在区间上单调递减,所以,又由,则原不等式变形可得,解可得:,即的取值范围为,故答案为【点睛】本题主要考查函数的单调性与奇偶性的综合应用,考查了指数函数的单调性以及对数的运算,意在考查综合应用所学知识解答问题的能力,属于基础题13、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.14、##【解析】根据全称量词命题的否定直接得出结果.【详解】命题“”的否定为:,故答案为:15、或2【解析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【点睛】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)直观图见解析;(2),.【解析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体被截取一个角,分别计算其表面积和体积可得答案.【详解】解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截取一个角,且该几何体的体积是以,,为棱的长方体的体积的.在直角梯形中,作,则是正方形,∴.在中,,,∴.∴.∴几何体的体积.∴该几何体的表面积为,体积为.【点睛】本题主要考查空间几何体的三视图与直观图、空间几何体的表面积与体积,考查学生的直观想象能力,数学计算能力,属于中档题.17、(1)(2)【解析】(1)由平方关系求出,再由求解即可;(2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间【小问1详解】依题意,因为,所以,所以从而【小问2详解】将函数的图象先向左平移个单位长度,得到函数的图象再把所得图象上所有点的横坐标变为原来的,得到函数的图象令,的单调递增区间是所以,,解得,所以函数的单调递增区间为18、(1)约为(2)为时,最大【解析】(1)运用正切三角函数建立等式,再结合题中数据可求解;(2)由,得到,再运用基本不等式求解.【小问1详解】由得,同理,.因为,所以,解得.因此,算出钟楼的高度约为.【小问2详解】由题设知,得,又,当且仅当时,取等号,故当时,最大.因为,则,所以当时,最大,故所求的是.19、(1)0(2)t(a)(3)12﹣8【解析】(1)a=1时,函数f(x)=(x﹣1)2﹣1,根据二次函数的性质即可求出它的值域;(2)化简g(x)=|f(x)|=|x(x﹣2a)|,讨论确定函数的单调性,求出最大值,得出t(a)的解析式;(3)分别求出各段函数的最小值(或下确界),比较各个最小值,其中的最小值,即为求t(a)的最小值【详解】(1)a=1时,f(x)=x2﹣2x=(x﹣1)2﹣1,∵x∈[0,2],∴﹣1≤x﹣1≤1,∴﹣1≤(x﹣1)2﹣1≤0,在区间上的最大值为0;(2)g(x)=|f(x)|=|x(x﹣2a)|,①当a≤0时,g(x)=x2﹣2ax在[0,2]上增函数,故t(a)=g(2)=4﹣4a;②当0<a<1时,g(x)在[0,a)上是增函数,在[a,2a)上是减函数,在[2a,2]上是增函数,而g(a)=a2,g(2)=4﹣4a,g(a)﹣g(2)=a2+4a﹣4=(a﹣22)(a+22),故当0<a<22时,t(a)=g(2)=4﹣4a,当22≤a<1时,t(a)=g(a)=a2,③当1≤a<2时,g(x)在[0,a)上是增函数,在[a,2]上是减函数,故t(a)=g(a)=a2,④当a≥2时,g(x)在[0,2]上是增函数,t(a)=g(2)=4a﹣4,故t(a);(3)由(2)知,当a<22时,t(a)=4﹣2a是单调减函数,,无最小值;当时,t(a)=a2是单调增函数,且t(a)的最小值为t(22)=12﹣8;当时,t(a)=4a﹣4是单调增函数,最小值为t(2)=4;比较得t(a)的最小值为t(22)=12﹣8【点睛】本题主要考查了二次函数在闭区间上的最值问题的解法,含参以及含绝对值的二次函数在闭区间上的最值问题和分段函数的最值问题的解法,意在考查学生的分类讨论思想意识以及数学运算能力20、(1),(2)左,,,2,上,1【解析】(1)根据降幂公式、二倍角的正弦公式及两角和的正弦公式化简,由正弦型三角函数的周期公式求周期,由正弦型函数的单调性求单调区间;(2)根据三角函数的图象变换过程求解即可.【小问1详解】,∴函数的最小正周期.由,得:,,∴的单调递减区间为,.【小问2详解】将的图象向左平移个单位,得到的图象,在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的倍,得到的图象,再在横坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年家纺布艺统一订购协议模板
- 2024年规范格式员工解聘协议范本
- 2024年培训学校业务承接协议典范
- 2024年资格认证代理挂靠服务协议
- 2024年简化场地租赁协议范例
- 2024年水产养殖协议范本及条款详解
- DB11∕T 1694-2019 生活垃圾收集运输节能规范
- 2024年设备分期付款购销协议典范
- 2024年房产租赁业务协议参考
- 2024年停车场租赁模板协议
- 突发事件应急处理知识培训
- 糖尿病专科护士考试试题
- 录音行业的就业生涯发展报告
- 人工智能概论-人工智能概述
- 乡村旅游财务分析策划方案
- 高校学生事务管理1
- (中职)ZZ030植物病虫害防治赛项规程(7月19日更新)
- 2024年国能包神铁路集团有限责任公司招聘笔试参考题库附带答案详解
- 非甾体类抗炎药课件
- 出入库登记管理制度
- 内科医生的职业认知和自我发展
评论
0/150
提交评论