版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州市金水区2023-2024学年数学九年级第一学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃62.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位3.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米 B.30米 C.16米 D.15米4.如图,在菱形中,,且连接则()A. B.C. D.5.二次函数图象的顶点坐标是()A. B. C. D.6.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥7.在反比例函数的图像上有三点、、,若,而,则下列各式正确的是()A. B.C. D.8.观察下列图形,是中心对称图形的是()A. B. C. D.9.若,则代数式的值()A.-1 B.3 C.-1或3 D.1或-310.下列银行标志图片中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11.如图,在中,,则的值为()A. B. C. D.12.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.二、填空题(每题4分,共24分)13.如图,⊙O与抛物线交于两点,且,则⊙O的半径等于_______.14.如图,⊙O的半径为2,AB是⊙O的切线,A.为切点.若半径OC∥AB,则阴影部分的面积为________.15.已知(x、y、z均不为零),则_____________.16.计算:_______.17.在等边三角形中,于点,点分别是上的动点,沿所在直线折叠后点落在上的点处,若是等腰三角形,则____.18.数据1、2、3、2、4的众数是______.三、解答题(共78分)19.(8分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若BC=,AC=5,求圆的直径AD的长.20.(8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.21.(8分)计算:.22.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为、、.(1)点关于坐标原点对称的点的坐标为______;(2)将绕着点顺时针旋转,画出旋转后得到的;(3)在(2)中,求边所扫过区域的面积是多少?(结果保留).(4)若、、三点的横坐标都加3,纵坐标不变,图形的位置发生怎样的变化?23.(10分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C(1)求抛物线的表达式;(2)在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的坐标;(3)在y轴上是否存在一点Q,使得△QAM为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由.24.(10分)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.25.(12分)如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点(1)若,求直线的函数表达式(2)若点将线段分成的两部分,求点的坐标(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标26.雾霾天气严重影响人民的生活质量.在今年“元旦”期间,某校九(1)班的综合实践小组同学对“雾霾天气的主要成因”随机调查了本地部分市民,并对调查结果进行了整理,绘制了如图不完整的统计图表,观察分析并回答下列问题.组别雾霾天气的主要成因A工业污染B汽车尾气排放C炉烟气排放D其他(滥砍滥伐等)(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图;(3)若该地区有100万人口,请估计持有A、B两组主要成因的市民有多少人?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.画一个三角形,其内角和是180°,是必然事件,故不符合题意;B.在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C.投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D.在一副扑克牌中抽出一张,抽出的牌是黑桃6,是随机事件,故符合题意;故选:D【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.3、B【分析】设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,∴此时高为18米的旗杆的影长为30m.故选:B.【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.4、D【分析】菱形ABCD属于平行四边形,所以BCAD,根据两直线平行同旁内角互补,可得∠BAD与∠ABC互补,已知∠BAD=120°,∠ABC的度数即可知,且∠BCE=90°,CE=BC可推BCE为等腰直角三角形,其中∠CBE=45°,∠ABE=∠ABC-∠CBE,故∠ABE的度数可得.【详解】解:∵在菱形ABCD中,BCAD,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),且∠BAD=120°,∴∠ABC=60°,又∵CEAD,且BCAD,∴CEBC,可得∠BCE=90°,又∵CE=BC,∴BCE为等腰直角三角形,∠CBE=45°,∴∠ABE=∠ABC-∠CBE=60°-45°=15°,故选:D.【点睛】本题主要考察了平行线的性质及菱形的性质求角度,掌握平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;菱形中,四条边的线段长度一样,根据以上的性质定理,从边长的关系推得三角形的形状,进而求得角度.5、B【解析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标.【详解】∵二次函数y=﹣(x+2)2+6,∴该函数的顶点坐标为(﹣2,6),故选:B.【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.6、D【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【详解】解:主视图和左视图都是三角形,此几何体为椎体,俯视图是一个圆,此几何体为圆锥.故选:D.【点睛】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.7、A【分析】首先判断反比例函数的比例系数为负数,可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点(x1,y1)和(x1,y1)的纵坐标的大小即可.【详解】∵反比例函数的比例系数为-1<0,∴图象的两个分支在第二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点(x1,y1)、(x1,y1)在第四象限,点(x3,y3)在第二象限,∴y3最大,∵x1>x1,y随x的增大而增大,∴y1>y1,∴y3>y1>y1.故选A.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的1个分支在第二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.8、C【分析】根据中心对称图形的概念判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的识别,熟练掌握概念是解题的关键.9、B【分析】利用换元法解方程即可.【详解】设=x,原方程变为:,解得x=3或-1,∵≥0,∴故选B.【点睛】本题考查了用换元法解一元二次方程,设=x,把原方程转化为是解题的关键.10、B【解析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、D【解析】过点A作,垂足为D,在中可求出AD,CD的长,在中,利用勾股定理可求出AB的长,再利用正弦的定义可求出的值.【详解】解:过点A作,垂足为D,如图所示.在中,,;在中,,,.故选:D.【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.12、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正确.
B.如图,过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B错误.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.【点睛】本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.二、填空题(每题4分,共24分)13、【分析】连接OA,AB与y轴交于点C,根据AB=2,可得出点A,B的横坐标分别为−1,1.再代入抛物线即可得出点A,B的坐标,再根据勾股定理得出⊙O的半径.【详解】连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为−1,1.∵⊙O与抛物线交于A,B两点,∴点A,B的坐标分别为(−1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.故答案为:.【点睛】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A的纵坐标是解题的关键.14、3π【分析】由切线及平行的性质可知,利用扇形所对的圆心角度数可得阴影部分面积所占的白分比,再用圆的面积乘以百分比即可.【详解】解:AB是⊙O的切线,A.为切点即阴影部分的面积故答案为:.【点睛】本题考查了切线的性质及扇形的面积,熟练掌握圆的切线垂直于过切点的半径这一性质是解题的关键.15、【分析】根据题意,可设x=5k,y=4k,z=3k,将其代入分式即可.【详解】解:∵∴设x=5k,y=4k,z=3k,将其代入分式中得:.
故答案为.【点睛】本题考查了比例的性质,解此类题可根据分式的基本性质先用未知数k表示出x,y,z,再代入计算.16、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案.【详解】解:=====.故答案为:.【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.17、,或【分析】根据等边三角形的性质,得到CD=3,BD=,∠CBD=30°,由折叠的性质得到,,,由是等腰三角形,则可分为三种情况就那些讨论:①,②,③,分别求出答案,即可得到答案.【详解】解:∵在等边三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直线折叠后点落在上的点处,∴,,,由是等腰三角形,则①当时,如图,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②当,此时点与点D重合,如图,∴;③当,此时点F与点D重合,如图,∴,∴;综合上述,的长度为:,或;故答案为:,或.【点睛】本题考查了等边三角形的性质,折叠的性质,以及等腰三角形的性质,熟练运用折叠的性质是本题的关键.注意利用分类讨论的思想进行解题.18、1【分析】根据众数的定义直接解答即可.【详解】解:数据1、1、3、1、4中,∵数字1出现了两次,出现次数最多,∴1是众数,故答案为:1.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.三、解答题(共78分)19、(1)详见解析;(2)1【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;
(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD=90°,又∠EBD=∠CAB,∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵OB∥AC,OA=OD,AC=5,.∴OM=2.5,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2,BD=BC=.∴r1=3,r2=-0.5(舍).∴圆的直径AD的长是1.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线.20、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)设BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE为△ABC的中位线,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直径,∴DA与⊙O相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.21、1-.【解析】分别把各特殊角的三角函数值代入,再根据实数的运算法则进行计算.【详解】原式=4×-3×+2××=1-.【点睛】本题考查了特殊角的三角函数值.熟记特殊角的三角函数值是解题的关键.22、(1)(1,-1);(2)见详解;(3);(4)图形的位置是向右平移了3个单位.【分析】(1)先求出点B的坐标,再点关于坐标原点对称的点的坐标即可;(2)根据将绕着点顺时针旋转的坐标特征即可得到A1、B1、C1的坐标,然后描点连线即可;
(3)利用扇形面积公式进行计算可得线段AC旋转时扫过的面积.(4)、、三点的横坐标都加3,即图形的位置是向右平移了3个单位.【详解】解:(1)∵点B的坐标是,∴点关于坐标原点对称的点的坐标为(1,-1);(2)如图所示,即为所求作的图形;(3)∵,∴;(4)∵、、三点的横坐标都加3,纵坐标不变,∴图形的位置是向右平移了3个单位.【点睛】本题考查了利用旋转变换作图以及扇形面积的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.23、(1)y=﹣x2+2x+3;(2)点P的坐标为:(2,3);(3)存在,点Q的坐标为:(0,1)或(0,3)或(0,)或(0,﹣)【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)过点M作直线m∥AC,在AC下方作等距离的直线n,直线n与抛物线交点即为点P,即可求解;(3)分AM时斜边、AQ是斜边、MQ是斜边三种情况,分别求解即可.【详解】解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点M作直线m∥AC,直线m与抛物线交点即为点P,设直线m的表达式为:y=﹣x+b,点M(1,4),则直线m的表达式为:y=﹣x+5,联立方程组,解得:x=1(舍去)或2;故点P的坐标为:(2,3);(3)设点Q的坐标为:(0,m),而点A、M的坐标分别为:(3,0)、(1,4);则AM2=20,AQ2=9+m2,MQ2=(m﹣4)2+1=m2﹣8m+17;当AM时斜边时,则20=9+m2+m2﹣8m+17,解得:m=1或3;当AQ是斜边时,则9+m2=20+m2﹣8m+17,解得m=;当MQ是斜边时,则m2﹣8m+17=20+9+m2,解得m=﹣,综上,点Q的坐标为:(0,1)或(0,3)或(0,)或(0,﹣)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、勾股定理的运用等,其中(3),要注意分类求解,避免遗漏.24、(2)y=﹣x2+3x+2;(2)存在.P(﹣,).(3)【分析】(2)将A,B,C三点代入y=ax2+bx+2求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(2)∵抛物线y=ax2+bx+2(a≠0)与x轴,y轴分别交于点A(﹣2,0),B(2,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+3x+2.(2)存在.理由如下:y=﹣x2+3x+2=﹣(x﹣)2+.∵点D(3,m)在第一象限的抛物线上,∴m=2,∴D(3,2),∵C(0,2)∵OC=OB,∴∠OBC=∠OCB=25°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=25°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为yBP=kx+b(k≠0),把G(0,2),B(2,0)代入,得k=﹣,b=2,∴BP解析式为yBP=﹣x+2.yBP=﹣x+2,y=﹣x2+3x+2当y=yBP时,﹣x+2=﹣x2+3x+2,解得x2=﹣,x2=2(舍去),∴y=,∴P(﹣,).(3)理由如下,如图B(2,0),C(0,2),抛物线对称轴为直线,设N(,n),M(m,﹣m2+3m+2)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴2-=0-m,∴m=∴﹣m2+3m+2=,∴;或∴0-=2-m,∴m=∴﹣m2+3m+2=,∴;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴∴m=∴﹣m2+3m+2=∴综上所述,当以M、N、B、C为顶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 击剑场景建设围挡施工协议
- 建筑工程质量管理:处方管理办法
- 医疗机构危险废弃物处理规范
- 旅游景区宣传策划团队聘用协议
- 建筑物流施工图设计合同模板
- 体育场馆地面施工合同
- 2025版化妆产品展示厅承包租赁合同3篇
- 2024年版油罐销售协议3篇
- 2025年度保安服务市场调研与竞争分析合同3篇
- 2025年度绿色建材板材采购合同3篇
- 烘干煤泥合同范例
- 4.1.1陆地水体间的相互关系课件高中地理湘教版(2019)选择性必修一
- 【MOOC】大学生心理学-中央财经大学 中国大学慕课MOOC答案
- 2025年“三基”培训计划
- 第20课 北洋军阀统治时期的政治、经济与文化 教案
- 山东省青岛实验高中2025届高三物理第一学期期末综合测试试题含解析
- 物理人教版2024版八年级上册6.2密度课件03
- 2024年广西普法云平台考试答案
- 2023-2024学年广东省深圳市福田区八年级(上)期末英语试卷
- 铁路设备售后服务方案
- 2023年中国华电集团有限公司招聘考试真题
评论
0/150
提交评论