重庆合川区凉亭中学2023-2024学年八上数学期末质量检测模拟试题含解析_第1页
重庆合川区凉亭中学2023-2024学年八上数学期末质量检测模拟试题含解析_第2页
重庆合川区凉亭中学2023-2024学年八上数学期末质量检测模拟试题含解析_第3页
重庆合川区凉亭中学2023-2024学年八上数学期末质量检测模拟试题含解析_第4页
重庆合川区凉亭中学2023-2024学年八上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆合川区凉亭中学2023-2024学年八上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列关于的叙述错误的是()A.是无理数 B.C.数轴上不存在表示的点 D.面积为的正方形的边长是2.下列运算正确的是:()A. B. C. D.3.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程120千米,线路二全程150千米,汽车在线路二上行驶的平均时速是线路一上车速的2倍,线路二的用时预计比线路一用时少小时,如果设汽车在线路一上行驶的平均速度为千米/时,则下面所列方程正确的是()A. B.C. D.4.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A5B5A6的边长为()A.6 B.16 C.32 D.645.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙6.当x=-1时,代数式的结果是()A.-3 B.1 C.-1 D.-67.已知A,B两地相距120千米,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车,图中DE,OC分别表示甲、乙离开A地的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y(单位:千米),则y关于t的函数图象是()A. B. C. D.8.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC9.下列各数:3.1415926,﹣,,π,4.217,,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有()A.4个 B.3个 C.2个 D.1个10.已知关于的分式方程的解是非负数,则的取值范圈是()A. B. C.且 D.或11.下列各式正确的是()A. B. C. D.12.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=8米,OB=6米,A、B间的距离不可能是()A.12米 B.10米 C.15米 D.8米二、填空题(每题4分,共24分)13.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)14.计算:=__________15.函数中,自变量x的取值范围是.16.计算:=_______.17.(1)可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是_________________.(2)把多项式可以分解因式为(___________)18.分解因式:x3﹣2x2+x=______.三、解答题(共78分)19.(8分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?20.(8分)已知:如图,点、、、在一条直线上,、两点在直线的同侧,,,.求证:.21.(8分)老师在黑板上写出三个算式:,,,王华接着又写了两个具有同样规律的算式:,,…(1)请你再写出一个(不同于上面算式)具有上述规律的算式;(2)用文字表述上述算式的规律;(3)证明这个规律的正确性.22.(10分)已知,(1)求的值;(2)求的值.23.(10分)如图在平面直角坐标系中,的顶点坐标分别为,,(1)请在图中画出关于轴的对称图形,点、、的对称点分别为、、,其中的坐标为;的坐标为;的坐标为.(2)请求出的面积.24.(10分)已知:如图,点B、E、C、F在同一条直线上,AB⊥BF于点B,DE⊥BF于点E,BE=CF,AC=DF.求证:(1)AB=DE;(2)AC∥DF.25.(12分)(1)解方程(2)26.在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式逐一判断即可.【详解】解:A.是无理数,故本选项不符合题意;B.,故本选项不符合题意;C.数轴上存在表示的点,故本选项符合题意;D.面积为的正方形的边长是,故本选项不符合题意.故选C.【点睛】此题考查的是实数的相关性质,掌握无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式是解决此题的关键.2、D【分析】根据幂的运算法则和完全平方公式逐项计算可得出正确选项.【详解】解:A.,故错误;B.,故错误;C.,故错误;D.,正确.故选:D【点睛】本题考查了幂的运算和完全平方公式,熟练掌握幂的运算法则是解题关键.3、A【分析】根据题意可得在线路二上行驶的平均速度为2xkm/h,根据线路二的用时预计比线路一用时少小时,列方程即可.【详解】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为2xkm/h,由题意得:故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.4、B【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=1B1A2…依次类推可得出答案.【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=1B1A2=1,…∴△AnBnAn+1的边长为2n-1,∴△A5B5A6的边长为25-1=24=1.故选B.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=1B1A2进而发现规律是解题关键.5、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【点睛】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.6、A【分析】把x=-1代入,根据有理数混合运算法则计算即可得答案.【详解】∵x=-1,∴=(-1)2×(-1-1)-(-1)[(-1)2+(-1)-1]=-2+(-1)=-3.故选:A.【点睛】本题考查代数式求值,熟练掌握有理数混合运算法则是解题关键.7、B【分析】由题意可知乙先骑自行车出发,1小时后甲骑摩托车出发,从而排除A、C选项,设OC的函数解析式为s=kt+b,DE的函数解析式为s=mt+n,利用待定系数法求得函数解析式,联立求得甲乙相遇的时间,从而排除D选项.【详解】解:由题意可设OC的函数解析式为s=kt(0≤t≤3),将C(3,80)代入,得k=,∴OC的函数解析式为s=t(0≤t≤3),,设DE的函数解析式为s=mt+n(1≤t≤3),将D(1,0),E(3,120)代入,得,∴设DE的函数解析式为s=60t﹣60(1≤t≤3),则t=0时,甲乙相距0千米;当t=1时,甲乙相距千米;当t=1.8时,甲追上乙,甲乙相距0千米;当t=3时,甲到达B地,甲乙相距40千米.故只有B选项符合题意.故选B.【点睛】本题主要考查一次函数的应用,解此题的关键在于准确理解题意,分清楚函数图象中横纵坐标表示的量.8、B【解析】试题分析:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),则还需添加的添加是OB=OC,故选B.考点:全等三角形的判定.9、B【分析】根据无理数的定义逐个判断即可.【详解】解:无理数有π,,1.1010010001…(相邻两个1之间依次增加1个0),共3个,故选:B.【点睛】本题考查无理数的定义,属于基础题型,解题的关键是掌握无理数的三种主要形式:①开方开不尽的数;②无限不循环的小数;③含有π的数.10、C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得所以因为方程的解是非负数所以,且所以且故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.11、D【分析】根据幂的运算法则即可依次判断.【详解】A.,故错误;B.,故错误;C.,故错误;D.,正确,故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.12、C【解析】试题分析:根据两边之和大于第三边,两边之差小于第三边,AB的长度在2和14之间,故选C.考点:三角形三边关系.A二、填空题(每题4分,共24分)13、∠D=∠B【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC,DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).14、-1【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=1−5+1=−3+1=−1.故答案为:-1【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.15、且.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.16、1【分析】根据零指数幂,负整数指数幂以及绝对值的运算法则计算即可.【详解】,故答案为:1.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.17、9.2×10-4【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2)根据十字相乘法即可求解.【详解】(1)0.00092=9.2×10-4(2)=()故答案为9.2×10-4;.【点睛】此题主要考查科学记数法的表示及因式分解,解题的关键是熟知十字相乘法因式分解的运用.18、x(x-1)2.【解析】由题意得,x3﹣2x2+x=x(x﹣1)2三、解答题(共78分)19、限行期间这路公交车每天运行50车次.【分析】设限行期间这路公交车每天运行x车次,则原来运行车次,根据“平均每车次运送乘客与原来的数量基本相同”列出分式方程,求解即可.【详解】解:设限行期间这路公交车每天运行x车次,则原来运行车次,根据题意可得:,解得:,经检验得是该分式方程的解,答:限行期间这路公交车每天运行50车次.【点睛】本题考查分式方程的实际应用,根据题意列出分式方程并求解是解题的关键,需要注意的是求出分式方程的解之后一定要验根.20、见解析【分析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.【详解】∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF.【点睛】本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.21、(1)152-92=8×18,132-92=8×11;(2)任意两个奇数的平方差是8的倍数;(3)证明见解析.【分析】(1)根据算式的规律可见:左边是两个奇数的平方差,右边是8的倍数;可写出相同规律的算式;

(2)任意两个奇数的平方差是8的倍数;

(3)可设任意两个奇数为:2n+1,2m+1(其中n、m为整数)计算即可.【详解】解:(1)通过对老师和王华算式的观察,可以知道,左边是奇数的平方差,右边是8的倍数,

∴152-92=8×18,132-92=8×11,…;

(2)上述规律可用文字描述为:任意两个奇数的平方差等于8的倍数;

(3)证明:设m、n为整数,则任意两个奇数可表示为2m+1和2n+1,

∴(2m+1)2-(2n+1)2=(2m-2n)(2m+2n+2)=4(m-n)(m+n+1),

又∵①当m、n同奇数或同偶数时;m-n一定是偶数,设m-n=2a;

②m、n一奇数一偶数;m+n+1一定是偶数,设m+n+1=2a

∴(2m+1)2-(2n+1)2=8a(m+n+1),

而a(m+n+1)是整数,

∴任意两个奇数的平方差等于8的倍数成立.【点睛】本题考查了一个数学规律,即任意两个奇数的平方差等于8的倍数.通过本题的学习可见数字世界的奇妙变换,很有意义.22、(1);(2).【分析】(1)根据二次根式有意义的条件可得关于a、b的不等式组,解不等式组即可求得答案;(2)把a+b的值代入所给式子,继而根据非负数的性质可得关于x、y的方程组,解方程组求解x、y的值代入所求式子进行计算即可.【详解】(1)由题意,由①得:a+b≥2020,由②得:a+b≤2020,所以a+b=2020;(2)∵a+b=2020,∴变为,∵,∴,∴,∴=7×2+(-1)2020=14+1=1.【点睛】本题考查了二次根式有意义的条件,二次根式的非负性,熟练掌握二次根式的相关知识是解题的关键.23、(1)详见解析,(3,4);(4,1);(1,1);(2)4.1.【分析】(1)根据轴对称的定义画出图形,再写出坐标;(2)根据三角形的面积公式求解即可.【详解】(1)如图,为所求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论