版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市2024届高一数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α终边上一点P(-2,3),则cos(A.32 B.-32 C.2.已知a,b,,且,,则()A. B. C. D.3.如图,已知矩形中,,,该矩形所在的平面内一点满足,记,,,则()A.存在点,使得 B.存在点,使得C.对任意的点,有 D.对任意的点,有4.函数的最小正周期为()A. B. C. D.5.已知内角的对边分别为,满足且,则△ABC()A.一定是等腰非等边三角形 B.一定是等边三角形C.一定是直角三角形 D.可能是锐角三角形,也可能是钝角三角形6.已知,,直线,若直线过线段的中点,则()A.-5 B.5 C.-4 D.47.函数在上零点的个数为()A.2 B.3 C.4 D.58.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大9.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角10.已知,则().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正方体中,点是线段上的动点,则直线与平面所成的最大角的余弦值为________.12.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.13.正项等比数列中,为数列的前n项和,,则的取值范围是____________.14.已知,,与的夹角为钝角,则的取值范围是_____;15.在中,角所对的边分别为,若,则=______.16.已知,,则的值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求实数的取值范围.18.已知,,,.(1)求的最小值(2)证明:.19.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).20.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=21.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】角α终边上一点P(-2,3),所以cos(2、A【解题分析】
利用不等式的基本性质以及特殊值法,即可得到本题答案.【题目详解】由不等式的基本性质有,,故A正确,B不正确;当时,,但,故C、D不正确.故选:A【题目点拨】本题主要考查不等式的基本性质,属基础题.3、C【解题分析】以为原点,以所在直线为轴、轴建立坐标系,则,,且在矩形内,可设,,,,,,错误,正确,,,错误,错误,故选C.【方法点睛】本题主要考查平面向量数量积公式的坐标表示,属于中档题.平面向量数量积公式有两种形式,一是几何形式,,二是坐标形式,(求最值问题与求范围问题往往运用坐标形式),主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).4、D【解题分析】,函数的最小正周期为,选.【题目点拨】求三角函数的最小正周期,首先要利用三角公式进行恒等变形,化简函数解析式,把函数解析式化为的形式,然后利用周期公式求出最小正周期,另外还要注意函数的定义域.5、B【解题分析】
根据正弦定理可得和,然后对进行分类讨论,结合三角形的性质,即可得到结果.【题目详解】在中,因为,所以,又,所以,又当时,因为,所以时等边三角形;当时,因为,所以不存在,综上:一定是等边三角形.故选:B.【题目点拨】本题主要考查了正弦定理的应用,解题过程中注意两解得情况,一般需要检验,本题属于基础题.6、B【解题分析】
根据题意先求出线段的中点,然后代入直线方程求出的值.【题目详解】因为,,所以线段的中点为,因为直线过线段的中点,所以,解得.故选【题目点拨】本题考查了直线过某一点求解参量的问题,较为简单.7、D【解题分析】
在同一直角坐标系下,分别作出与的图象,结合函数图象即可求解.【题目详解】解:由题意知:函数在上零点个数,等价于与的图象在同一直角坐标系下交点的个数,作图如下:由图可知:函数在上有个零点.故选:D【题目点拨】本题考查函数的零点的知识,考查数形结合思想,属于中档题.8、D【解题分析】
利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【题目详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强,应是相关系数的绝对值越大,故错误故选:D【题目点拨】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.9、D【解题分析】
可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【题目详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【题目点拨】本题主要考查了根据所在象限求所在象限的方法,属于中档题.10、C【解题分析】
分子分母同时除以,利用同角三角函数的商关系化简求值即可.【题目详解】因为,所以,于是有,故本题选C.【题目点拨】本题考查了同角三角函数的商关系,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
作的中心,可知平面,所以直线与平面所成角为,当在中点时,最大,求出即可。【题目详解】设正方体的边长为1,连接,由于为正方体,所以为正四面体,棱长为,为等边三角形,作的中心,连接,,由于为正四面体,为的中心,所以平面,所以为直线与平面所成角,则当在中点时,最大,当在中点时,由于为正四面体,棱长为,等边三角形,为的中心,所以,,所以直线与平面所成的最大角的余弦值为故直线与平面所成的最大角的余弦值为故答案为【题目点拨】本题考查线面所成角,解题的关键是确定当在中点时,最大,考查学生的空间想象能力以及计算能力。12、1【解题分析】
设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【题目详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【题目点拨】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.13、【解题分析】
利用结合基本不等式求得的取值范围【题目详解】由题意知,,且,所以,当且仅当等号成立,所以.故答案为:【题目点拨】本题考查等比数列的前n项和及性质,利用性质结合基本不等式求最值是关键14、【解题分析】
与的夹角为钝角,即数量积小于0.【题目详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【题目点拨】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.15、【解题分析】根据正弦定理得16、3【解题分析】
,故答案为3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)①9,②【解题分析】
(1)根据不等式的端点值是对应方程的实数根,利用根与系数的关系,得到的值;(2)①根据求的最值,可利用求最值;②利用二次函数恒成立问题求解.【题目详解】由已知可知,的两根是所以,解得.(2)①,当时等号成立,因为,解得时等号成立,此时的最小值是9.②在上恒成立,,又因为代入上式可得解得:.【题目点拨】本题考查了二次函数与一元二次方程和一元二次不等式的问题,和基本不等式求最值,属于基础题型.18、(1)1(2)见解析【解题分析】
(1)根据基本不等式即可求出,(2)利用x2+y2+z2(x2+y2+z2+x2+y2+y2+z2+x2+z2),再根据基本不等式即可证明【题目详解】(1)因为,,所以,即,当且仅当时等号成立,此时取得最小值1.(2).当且仅当时等号成立,【题目点拨】本题考查了基本不等式求最值和不等式的证明,属于中档题.19、(1);(2).【解题分析】
(1),三棱锥P-ABC的体积为.(2)取PB的中点E,连接DE、AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,异面直线BC与AD所成的角的大小是.20、(1)-4(2)g(t)=t2【解题分析】
(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【题目详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【题目点拨】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.21、(1)证明见解析(2)【解题分析】
(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【题目详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省建筑安全员考试题库
- 2025年海南建筑安全员知识题库及答案
- 中国传统文化主题:对联
- 长度与时间的测量课件
- 《电路中的能量转化》课件
- 石油加工原油组成教学课件
- 病理生理学课件凝血和抗凝血平衡紊乱
- 一年级语文下册《语文园地六》课件
- 《心血管急症》课件
- 固定收益点评报告:把握跨年后的信用配置窗口
- 犀角多肽与免疫细胞相互作用的机制研究
- 中国食物成分表2018年(标准版)第6版
- 植树问题专项讲义(五大类型+方法+练习+答案)六年级数学小升初总复习
- 二年级上册数学竖式计算300道带答案
- 组织学与胚胎学课程教学大纲
- 玻璃硝酸钾加硬工艺
- 珠海金湾区2023-2024学年七年级上学期期末数学达标卷(含答案)
- 广西壮族自治区钦州市浦北县2023-2024学年七年级上学期期末历史试题
- 《输电线路防雷保护》课件
- 《中国八大菜系》课件
- 高级会计师 案例分析第五章 企业成本管理
评论
0/150
提交评论